Космическая энергетика. Откровения вселенной - космическая энергия. Новые технические горизонты

Представление о существовании универсальной космической энергии, которую человек может использовать и с помощью которой реализуются сверхчувственные феномены, имеет глубокие корни в культурах всех народов. Самое известное представление, которое мы находим в индийской философии, это существование праны, которая понимается как космическая энергия, которая существует в пяти различных формах и поддерживает жизненные процессы как "ветер тела".

В священных текстах индусов и буддистов описывается такая же космическая праэнергия, обозначенная мистическим слогом "Ом" или "Аум" , оба слога должны вызывать в мозгу колебания, которые приводят различные чакры (нервные центры человека) в состояние, позволяющее принимать космическую (жизненную) энергию.

Библия описывает невидимую жизненную силу, которая поддерживает общее божественное начало, как "Святой дух"; "Или вы не знаете, что ваше тело является храмом святого духа, который в вас есть, который вы приняли от Бога и который вам самим не принадлежит?" (1. Кор.6.19). В японском учении акупунктуры мы находим "Ки", в китайском "Чи", обозначение жизненной энергии как реки, исток которой находится в точке выше пупка, и которая рассредотачивается по всему телу из легких через сети так называемых "меридианов" (нервные каналы). Вся материя рассматривается как проявление этой энергии на материальном уровне.

Райх, который завоевал всемирную славу как психоаналитик из Вены, в конце тридцатых годов говорил, что космическая энергия существует, она может впитываться человеческим организмом, накапливаться и выделяться им. Процесс приема, накапливания и выделения этой энергии, которую он называл Оргон-энергия, он выразил в формуле: напряжение - зарядка - разгрузка - расслабление.

Какую роль имеет эта биологическая пульсация в общем энергетическом хозяйстве живого организма, следующим образом описал один из ближайших сотрудников Райха, Ола Ракнес: "Пульсация регулирует энергетическое хозяйство организма так же, как удары сердца обеспечивают подачу крови в различные органы. Метаболизм энергии (- состояние изменения энергии) управляется автономной или вегетативной системой, которая влияет на пищеварение, обращение крови, дыхание, сексуальность и эмоции.

Одна из этих функций - дыхание - контролируется до определенной степени волей и централизованно - через центральную нервную систему. Поэтому через дыхательную систему мы можем проникнуть в свободную биологическую пульсацию организма. Важной предпосылкой здоровья является свободный метаболизм организма. Его можно узнать по беспрепятственной биологической пульсации, которая является критерием здоровья". (И мы в процессе нашего обучения сможем с помощью дыхательных упражнений управлять по желанию нашим энергетическим метаболизмом - и благодаря этому, например, сможем самостоятельно лечить психосоматические нарушения и заболевания!).

Вначале Райх смог энергию Оргон локализовать только как излучение, которое исходит от живого организма: только позже он обнаружил, что Оргон - как и "светоносный эфир", который ученые открыли раньше,- проявляется повсеместно. Поэтому постоянно происходит свободный обмен энергии. Ракнес называл для этого три предпосылки:

  1. Организм вбирает в себя необходимую энергию из питательных веществ, через дыхание и прямой приток Органа.
  2. Энергия может свободно циркулировать в теле и находится всегда там, где в ней возникает потребность.
  3. Организм должен быть в состоянии удалять избыточную энергию через адекватные движения.

Когда Вильгельм Райх за несколько дней до начала второй мировой войны получил место как экстраординарный профессор в Нью-Йорке в "Нью скул фор сошиал рисеч", он тут же поменял место жительства на США, где он создал собственный исследовательский центр в Мэне: "Оргонон"

С самого начала его работы в лаборатории приняли бурный характер, так как Райх был полон новых идей и динамика его работы всегда заражала его сотрудников. В эти годы он работал в таких различных областях, как психология, психоанализ, социология, физика, биология и метеорология, но всегда с одной целью: практическое применение энергии Оргон.
В многочисленных экспериментах, проведенных за многие годы вплоть до его смерти, в которых ему ассистировал маленький штаб сотрудников, он смог доказать, что Оргон является космической энергией, которая встречается всюду в космосе. Она существенным образом влияет на общую биологическую жизнь. Райх:

"Без сомнения, в организме имеется электричество в виде электрически заряженных коллоидных частиц и ионов. Вся коллоидная химия использует это. как и мускульная нейрофизиология... Но все же имеется ряд проявлений, которые мы никоим образом не можем объяснить в свете теории электромагнитной энергии. Это в первую очередь воздействие "магнетизма" тела. Многие врачи используют практически эти магнетические силы... Никто никогда не видел органическое движение при электрическом воздействии, которое имело бы хоть малейшее сходство с нашими ежедневными живыми движениями всей мускульной системы или функциональной группы мускулов... Наши органы восприятия ясно нам говорят, что эмоции (без сомнения, это выражение нашей биологической энергии) в принципиальном плане отличаются от чувств, которые можно пережить при электрическом ударе. Наши органы чувств полностью не справляются с воздействием электромагнитных волн, которые наполняют атмосферу...

Если бы наша жизненная энергия существовала в виде электричества, это было бы непонятно, так как органы восприятия являлись бы выражением этой энергии, почему нам доступно видеть только свет из всей области волн, а остальное недоступно. Мы не ощущаем ни электроны рентгеновского аппарата, ни излучение радия... До сих пор не удалось выразить в электрическом измерении витамины, которые несомненно содержат биологическую энергию... Это все огромные противоречия, которые нельзя разрешить в рамках известных форм энергии..."

В ходе своих исследований Райх создал плодотворные предпосылки к познанию взаимосвязи Оргона с другими формами энергии, как со светом и электричеством. При этом он исходил из того, что все формы энергии и вся материя произошли из Оргона.

Райх: "Энергия Оргон не имеет массы. Она первоначальна и существовала уже перед материей и другими формами энергии... Когда отдельные токи Оргона уплотняются и сплавляются друг с другом, они могут произвести: материю там, где до того она не существовала... Имеющаяся материя может от воздействия энергии Оргона спонтанно организоваться в живые формы там, где до этого не было никакой жизни... В естественной концентрации Оргон в состоянии организовать системы... Этими системами могут быть планеты, солнца и даже целые галактики..."

Физика элементарных частиц (элементарные частицы - это простейшие из известных до сих пор ядерных физических объектов, из которых состоят атомы) нашего времени знает действительно одну форму энергии, которая отвечает многим характеристикам, данным для жизненной энергии Райхом, - энергия нейтрино!

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Космическая энергетика -- вид альтернативной энергетики, предусматривающий использование энергии Солнца для выработки электроэнергии, с расположением энергетической станции на земной орбите или на Луне.

Еще начиная с 70-х годов прошлого столетия, люди задумывались над тем, чтобы получать энергию прямо из космоса. Впервые такую идею описал Айзек Азимов в своем фантастическом рассказе «Логика». А первый патент, который описывал технологию передачи электроэнергии с помощью микроволн на значительное расстояние, получил Питер Глейзер в 1973 году. Хотя НАСА тогда не взялась за разработку этой идеи, посчитав ее слишком дорогой и опасной. Никто не мог гарантировать, что волны с точностью попадут с одной антенны на другую.

1. Спутник для выработки энергии

Разработка концепции.

Разработала концепцию солнечного спутника команда инженеров из калифорнийской компании Artemis Innovation Management Solutions во главе с Джоном Манкинсом. Как говорят разработчики, проект имеет важные преимущества перед предлагаемыми ранее технологиями. Инновационный подход к построению космического устройства устраняет необходимость в сложной системе управления питанием и системе распределения энергии.

Спутниковая солнечная электростанция будет собрана в космосе из отдельных элементов весом 49,5 - 198 килограммов, каждый из которых будет изготовлен по отдельности на Земле и доставлен на орбиту. По сути, она представляет собой огромный массив подвижных тонкопленочных зеркал, расположенных на внешней изогнутой поверхности спутника. Эти зеркала перехватывают и перенаправляют солнечный свет на фотоэлементы, расположенные на обратной стороне массива, которые вырабатывают электричество. Сторона спутника, обращенная к Земле, представляет собой круглый модульный массив, покрытый панелями микроволновой передачи энергии. Эти панели генерируют пучки радиочастотной энергии низкой интенсивности, которые будут передаваться на Землю.

После всех расчётов оказалось, что такой спутник вырабатывал бы 5000 мегаватт энергии, после передачи на землю оставалось бы 2000 мегаватт. Чтобы понять много это или нет, стоит сравнить эту мощность с Красноярской ГЭС, мощность которой составляет 6000 мегаватт.

Схема технологии.

Система предполагает наличие аппарата-излучателя, находящегося на геостационарной орбите. Предполагается преобразовывать солнечную энергию в форму, удобную для передачи (СВЧ, лазерное излучение), и передавать на поверхность в «концентрированном» виде. В этом случае на поверхности необходимо наличие «приёмника», воспринимающего эту энергию.

Космический спутник по сбору солнечной энергии по существу состоит из трех частей:

· средства сбора солнечной энергии в космическом пространстве, например, через солнечные батареи или тепловой двигатель Стирлинга;

· средства передачи энергии на землю, например, через СВЧ или лазер;

· средства получения энергии на земле, например, через ректенны.

Космический аппарат будет находиться на ГСО и ему не нужно поддерживать себя против силы тяжести. Он также не нуждается в защите от наземного ветра или погоды, но будет иметь дело с космическими опасностями, такими как микрометеориты и солнечные бури.

Актуальность в наши дни.

Так как за 40 лет со времени появления идеи солнечные батареи сильно упали в цене и увеличились в производительности, а грузы на орбиту стало доставлять дешевле, в 2007 году «Национальное космическое общество» США представило доклад, в котором говорит о перспективах развития космической энергетики в наши дни.

Преимущество системы

· Высокая эффективность из-за того, что нет атмосферы, выработка энергии не зависит от погоды и времени года.

· Практически полное отсутствие перерывов, так как кольцевая система спутников, опоясывающая Землю, в любой момент времени будет иметь хотя бы один, освещаемый Солнцем.

2. Лунный пояс

Проект космической энергетики, представленный компанией Shimizu в 2010 году. По задумке японских инженеров это должен быть пояс, из солнечных батарей протянутый по всему экватору Луны (11 тыс. километров) и шириной 400 километров.

Солнечные панели.

Так как производство и транспортировка такого количества солнечных батарей с земли не представляется возможным, то по замыслу ученых солнечные элементы должны будут производиться прямо на Луне. Для этого можно использовать лунный грунт, из которого можно делать солнечные батареи.

Передача энергии.

Энергия с этого пояса будет передаваться радиоволнами с помощью громадных 20 километровых антенн, и приниматься ректеннами здесь на земле. Второй способ передачи, который может использоваться это передача световым лучом с помощью лазеров и прием светоуловителем на земле.

Преимущества системы.

Так как на Луне нет атмосферы и погодных явлений, энергию можно будет вырабатывать почти круглосуточно и с большим коэффициентом эффективности.

Дэвид Крисуэлл предположил, что Луна является оптимальным местом для солнечных электростанций. Основное преимущество размещения солнечных коллекторов энергии на Луне в том, что большая часть солнечных батарей может быть построена из местных материалов, вместо земных ресурсов, что значительно снижает массу и, следовательно, расходы по сравнению с другими вариантами космических солнечных электростанций.

3. Технологии, применяющиеся в космической энергетике

космический лазерный электроэнергия

Беспроводная передача энергии на Землю.

Беспроводная передача электроэнергии была предложена на ранней стадии в качестве средства для передачи энергии от космической или Лунной станции к Земле. Энергия может быть передана с помощью лазерного излучения или СВЧ на различных частотах в зависимости от конструкции системы. Основная проблема использования СВЧ является нарушение экологической и биологической системы региона получения энергии. Ионизация биологических материалов начинается только с ультрафиолетового излучения и появляется при более высоких радиочастотах. Поэтому необходимо будет использовать частоты ниже ультрафиолетового излучения.

Исследователи НАСА работали в 1980-х годах с возможностью использования лазеров для излучения энергии между двумя точками в пространстве. В перспективе эта технология станет альтернативным способом передачи энергии в космической энергетике. В 1991 году начался проект SELENE, который предполагал создание лазеров для космической энергетики, в том числе и для излучения энергии лазером на лунные базы. В 1988 Грант Логан предложили использовать лазер, размещенный на Земле, чтобы обеспечить энергией космические станции, предположительно это можно было осуществить в 1989. Предлагалось использование солнечных элементов из алмаза при температуре 300 °C для преобразования ультрафиолетового лазерного излучения. Проект SELENE продолжал работать над этой концепцией, пока не был официально закрыт в 1993 после двух лет исследований, так и не осуществив тестирования технологии на большие расстояния. Причина закрытия: высокая стоимость осуществления.

Преобразование солнечной энергии в электрическую.

В космической энергетике единственный способ эффективного получения энергии это использование фотоэлементов. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16 %, у лучших образцов до 25 %. В лабораторных условиях уже достигнут КПД 43 %.

Получение энергии от СВЧ волн испускаемых источником.

Так же важно почерпнуть способы получения энергии. Один из них это получение энергии с помощью ректенн. Ректенна (выпрямляющая антенна) -- устройство, представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на неё волны в энергию постоянного тока.

Преимущества и недостатки.

Космическая солнечная энергия -- энергия, которую получают за пределами атмосферы Земли. При отсутствии загазованности атмосферы или облаков, на Землю падает примерно 35 % энергии от той, которая попала в атмосферу. Кроме того, правильно выбрав траекторию орбиты, можно получать энергию около 96 % времени. Таким образом, фотоэлектрические панели на геостационарной орбите Земли (на высоте 36000 км) будет получать в среднем в восемь раз больше света, чем панели на поверхности Земли и даже больше когда космический аппарат будет ближе к Солнцу, чем Земля. Дополнительным преимуществом является тот факт, что в космосе нет проблемы с весом или коррозии металлов из-за отсутствия атмосферы.

С другой стороны, главный недостаток космической энергетики и по сей день является её высокая стоимость. Средства, затраченные на вывод на орбиту системы общей массой 3 млн. т. окупятся только в течение 20 лет, и это если принимать в расчёт удельную стоимость доставки грузов с Земли на рабочую орбиту 100 $/кг. Нынешняя же стоимость вывода грузов на орбиту намного больше.

Основные технологические проблемы.

По данным исследований 2008 года, есть пять основных технологических проблем, которые наука должна преодолеть, чтобы космическая энергия стала легкодоступной.

· Фотоэлектрические и электронные компоненты должны работать с высокой эффективностью при высокой температуре.

· Беспроводная передача энергии должна быть точной и безопасной.

· Космические электростанции должны быть недорогими в производстве.

· Низкая стоимость космических ракет-носителей.

· Поддержание постоянного положения станции над приёмником энергии: давление солнечного света будет отталкивать станцию от нужного положения, а давление электромагнитного излучения, направленного на Землю, будет толкать станцию от Земли.

Размещено на Allbest.ru

...

Подобные документы

    Солнечная энергетика. История развития солнечной энергетики. Способы получения электричества и тепла из солнечного излучения. Достоинства и недостатки использования солнечной энергетики. Типы фотоэлектрических элементов. Технологии солнечной энергетики.

    реферат , добавлен 30.07.2008

    Рентабельность развития солнечной космической электростанции, этапы и направления данного процесса, его перспективы, значение. Фотоэлектрическое преобразование солнечного излучения. Беспроводная передача энергии с использованием уравнения передачи Фриис.

    курсовая работа , добавлен 17.06.2012

    Возрастание интереса к проблеме использования солнечной энергии. Разные факторы, ограничивающие мощность солнечной энергетики. Современная концепция использования солнечной энергии. Использование океанской энергии. Принцип действия всех ветродвигателей.

    реферат , добавлен 20.08.2014

    Ознакомление с основными направлениями и перспективами развития альтернативной энергетики. Определение экономических и экологических преимуществ использования ветровой, солнечной, геотермальной, космической, водородной, сероводородной энергии, биотоплива.

    реферат , добавлен 15.12.2010

    Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.

    презентация , добавлен 20.12.2009

    Геотермальная энергия и ее использование. Применение гидроэнергетических ресурсов. Перспективные технологии солнечной энергетики. Принцип работы ветроустановок. Энергия волн и течений. Состояние и перспективы развития альтернативной энергетики в России.

    реферат , добавлен 16.06.2009

    Количество солнечной энергии, попадающей на Землю, ее использование человеком. Способы пассивного применения солнечной энергии. Солнечные коллекторы. Технологический цикл солнечных тепловых электростанций. Промышленные фотоэлектрические установки.

    презентация , добавлен 06.12.2015

    Производство электроэнергии различными способами. Фотоэлектрические установки, системы солнечного теплоснабжения, концентрирующие гелиоприемники, солнечные коллекторы. Развитие солнечной энергетики. Экологические последствия развития солнечной энергетики.

    реферат , добавлен 27.10.2014

    Основные сведения об альтернативной энергетики. Преимущества и недостатки вакуумных коллекторов. Снижение зависимости от поставок энергоносителей. Применение фокусирующих коллекторов. Преимущества использования экологически чистой солнечной энергии.

    реферат , добавлен 21.03.2015

    Обзор технологий и развитие электроустановок солнечных электростанций. Машина Стирлинга и принцип ее действия. Производство электроэнергии с помощью солнечных батарей. Использования солнечной энергии в различных отраслях производства промышленности.

1968 : Питер Глейзер представил идею больших солнечных спутниковых систем с солнечным коллектором размером в квадратную милю на высоте геостационарной орбиты (ГСО 36000 км над экватором), для сбора и преобразования энергии солнца в электромагнитный пучок СВЧ для передачи полезной энергии на большие антенны на Земле.

1990 :"Исследовательским центром им. М. В. Келдыша" разработана концепция энергоснабжения Земли из космоса с использованием низких околоземных орбит. «Уже в 2020-2030 годы можно создать 10-30 космических электростанций, каждая из которых будет состоять из десяти космических энергомодулей. Планируемая суммарная мощность станций будет равна 1,5-4,5 ГВт, а суммарная мощность у потребителя на Земле - 0,75-2,25 ГВт». Далее планировалось к 2050-2100 годам довести количество станций до 800 единиц, а конечную мощность у потребителя до 960 ГВт. Однако на сегодняшний день неизвестно даже о создании рабочего проекта на основе этой концепции [ ] ;

2009 : Японское агентство аэрокосмических исследований объявило о своих планах вывести на орбиту спутник солнечной энергии, которые будут передавать энергию на Землю с помощью микроволн. Они надеются вывести первый прототип орбитального спутника к 2030 году.

2009 : Компания Solaren расположенная в Калифорнии (США) подписала договор с компанией PG&E о том, что последняя будет покупать энергию, которую Solaren произведет в космосе. Мощность будет составлять 200 МВт. По плану этой энергией будут питаться 250 000 домов. Реализация проекта планируется на 2016 год.

2011 : Объявлено о проекте нескольких японских корпораций, который должен быть реализован на базе 40 спутников с прикрепленными солнечными батареями. Флагманом проекта должна стать корпорация Mitsubishi . Передача на землю будет осуществляться с применением электромагнитных волн, приёмником должно стать «зеркало» диаметром около 3 км, которое будет находиться в пустынном районе океана . По состоянию на 2011 год планируется запустить проект в 2012 году

2013 : Главное научное учреждение Роскосмоса - ЦНИИмаш выступил с инициативой создания российских космических солнечных электростанций (КСЭС) мощностью 1-10 ГВт с беспроводной передачей электроэнергии наземным потребителям. В ЦНИИмаше обращают внимание, что американские и японские разработчики пошли по пути использования СВЧ -излучения, которое сегодня представляется значительно менее эффективным, чем лазерное .

Спутник для выработки энергии

История идеи

Изначально идея появилась в 1970-х годах. Появление такого проекта было связано с энергетическим кризисом. В связи с этим правительство США выделило 20 миллионов долларов космическому агентству NASA и компании Boeing для расчёта целесообразности проекта гигантского спутника SPS (Solar Power Satellite).

После всех расчётов оказалось, что такой спутник вырабатывал бы 5000 мегаватт энергии, после передачи на землю оставалось бы 2000 мегаватт. Чтобы понять много это или нет, стоит сравнить эту мощность с Красноярской ГЭС , мощность которой составляет 6000 мегаватт. Но примерная стоимость такого проекта 1 триллион долларов, что и послужило причиной закрытия программы.

Схема технологии

Система предполагает наличие аппарата-излучателя, находящегося на геостационарной орбите . Предполагается преобразовывать солнечную энергию в форму, удобную для передачи (СВЧ , лазерное излучение), и передавать на поверхность в «концентрированном» виде. В этом случае на поверхности необходимо наличие «приёмника», воспринимающего эту энергию .

Космический спутник по сбору солнечной энергии по существу состоит из трех частей:

  • средства сбора солнечной энергии в космическом пространстве, например, через солнечные батареи или тепловой двигатель Стирлинга ;
  • средства передачи энергии на землю, например, через СВЧ или лазер;
  • средства получения энергии на земле, например, через ректенны .

Космический аппарат будет находиться на ГСО и ему не нужно поддерживать себя против силы тяжести. Он также не нуждается в защите от наземного ветра или погоды, но будет иметь дело с космическими опасностями, такими как микрометеориты и солнечные бури .

Актуальность в наши дни

Так как за 40 лет со времени появления идеи солнечные батареи сильно упали в цене и увеличились в производительности, а грузы на орбиту стало доставлять дешевле, в 2007 году «Национальное космическое общество» США представило доклад в котором говорит о перспективах развития космической энергетики в наши дни.

Преимущества системы

  • Высокая эффективность из-за того, что нет атмосферы, выработка энергии не зависит от погоды и времени года.
  • Практически полное отсутствие перерывов так как кольцевая система спутников, опоясывающая Землю, в любой момент времени будет иметь хотя бы один, освещаемый Солнцем.

Лунный пояс

Проект космической энергетики представленный компанией Shimizu в 2010 году . По задумке японских инженеров это должен быть пояс из солнечных батарей протянутый по всему экватору Луны (11 тыс. километров) и шириной 400 километров.

Солнечные панели

Так как производство и транспортировка такого количества солнечных батарей с земли не представляется возможным, то по замыслу ученых солнечные элементы должны будут производиться прямо на Луне. Для этого можно использовать лунный грунт из которого можно делать солнечные батареи.

Передача энергии

Энергия с этого пояса будет передаваться радиоволнами с помощью громадных 20 километровых антенн и приниматься ректеннами здесь, на Земле. Второй способ передачи который может использоваться это передача световым лучом с помощью лазеров и прием свето-уловителем на земле.

Преимущества системы

Так как на Луне нет атмосферы и погодных явлений, энергию можно будет вырабатывать почти круглосуточно и с большим коэффициентом эффективности.

Дэвид Крисуэлл предположил, что Луна является оптимальным местом для солнечных электростанций. Основное преимущество размещения солнечных коллекторов энергии на Луне в том, что большая часть солнечных батарей может быть построена из местных материалов, вместо земных ресурсов, что значительно снижает массу и, следовательно, расходы по сравнению с другими вариантами космических солнечных электростанций.

Технологии применяющиеся в космической энергетике

Беспроводная передача энергии на Землю

Беспроводная передача электроэнергии была предложена на ранней стадии в качестве средства для передачи энергии от космической или Лунной станции к Земле. Энергия может быть передана с помощью лазерного излучения или СВЧ на различных частотах в зависимости от конструкции системы. Какой выбор был сделан, чтобы передача излучения была не ионизирующей, во избежание возможных нарушений экологии или биологической системы региона получения энергии? Верхний предел для частоты излучения установлен таким, чтобы энергия на один фотон не вызывала ионизацию организмов при прохождении через них. Ионизация биологических материалов начинается только с ультрафиолетового излучения и, как следствие, проявляется при более высоких частотах, поэтому большое количество радиочастот будет доступно для передачи энергии.

Лазеры

Преобразование солнечной энергии в электрическую

В космической энергетике (в существующих станциях и при разработках космических электростанций) единственный способ эффективного получения энергии это использование фотоэлементов. Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию . Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16 %, у лучших образцов до 25 %. В лабораторных условиях уже достигнут КПД 43 % .

Получение энергии от СВЧ волн испускаемых спутником

Так же важно почеркнуть способы получения энергии. Один из них это получение энергии с помощью ректенн. Ректенна (выпрямляющая антенна) - устройство , представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на неё волны в энергию постоянного тока . Простейшим вариантом конструкции может быть полуволновый вибратор, между плечами которого устанавливается устройство с односторонней проводимостью (например диод). В таком варианте конструкции антенна совмещается с детектором, на выходе которого, при наличии падающей волны, появляется ЭДС. Для повышения усиления такие устройства могут быть объединены в многоэлементные решётки.

Преимущества и недостатки

Космическая солнечная энергия - энергия, которую получают за пределами атмосферы Земли. При отсутствии загазованности атмосферы или облаков, на Землю падает примерно 35 % энергии от той, которая попала в атмосферу. Кроме того, правильно выбрав траекторию орбиты, можно получать энергию около 96 % времени. Таким образом, фотоэлектрические панели на геостационарной орбите Земли (на высоте 36000 км) будет получать в среднем в восемь раз больше света, чем панели на поверхности Земли и даже больше когда космический аппарат будет ближе к Солнцу чем Земля. Дополнительным преимуществом является тот факт, что в космосе нет проблемы с весом или коррозии металлов из-за отсутствия атмосферы.

С другой стороны, главный недостаток космической энергетики и по сей день является её высокая стоимость. Средства, затраченные на вывод на орбиту системы общей массой 3 млн т. окупятся только в течение 20 лет, и это если принимать в расчёт удельную стоимость доставки грузов с Земли на рабочую орбиту 100 $/кг. Нынешняя же стоимость вывода грузов на орбиту намного больше.

Вторая проблема создания ОЭС - большие потери энергии при передаче. При передаче энергии на поверхность Земли будет потеряны, по крайней мере, 40-50 %.

Основные технологические проблемы

По данным американских исследований 2008 года, есть пять основных технологических проблем, которые наука должна преодолеть, чтобы космическая энергия стала легкодоступной:

  • Фотоэлектрические и электронные компоненты должны работать с высокой эффективностью при высокой температуре.
  • Беспроводная передача энергии должна быть точной и безопасной.
  • Космические электростанции должны быть недорогими в производстве.
  • Низкая стоимость космических ракет-носителей.
  • Поддержание постоянного положения станции над приёмником энергии: давление солнечного света будет отталкивать станцию от нужного положения, а давление электромагнитного излучения , направленного на Землю, будет толкать станцию от Земли.

Другие способы использования космической энергии

Использование электроэнергии в космических полетах

Кроме того, чтобы излучать энергию на Землю, спутники ОЭС могут также питать межпланетные станции и космические телескопы. Так же это может быть безопасной альтернативой ядерным реакторам на корабле который полетит на красную планету . Другой сектор, который может извлечь выгоду из ОЭС будет космический туризм .

Примечания

  1. Glaser, Peter E. (December 25, 1973). “Method And Apparatus For Converting Solar Radiation To Electrical Power” . United States Patent 3,781,647 .

В космосе нет атмосферы, там никогда не идет дождь, а на геостационарных орбитах никогда не наступает ночь: это идеальное место для солнечной электростанции, которая будет собирать энергию 24 часа в сутки, 365 дней в году. $CUT$ Чистая энергия сверху

США, Китай, Индия и Япония уже разрабатывают собственные проекты, которые будут включать роботизированные массивы солнечных батарей, которые будут направлять на Землю гигантское количество чистой и возобновляемой энергии без проводов.

Некоторые варианты предполагают отправку до 1 ГВт энергии с помощью лучей на Землю - этого достаточно для питания крупного города. По мнению Пола Яффе, космического инженера из Научно-исследовательской лаборатории ВМС США, концепция абсолютно обоснована научно.

«NASA и Министерство энергетики США провели исследование в конце 70-х годов, которое обошлось им в 20 миллионов долларов, и подробно изучили концепцию, - говорит Яффе. - На тот момент все пришли к выводам, что проблем с физикой нет никаких, но есть вопросы по части экономики».

Основная проблема - это стоимость ряда космических запусков, которые необходимы для строительства спутника, передающего энергию. Учитывая стоимость запуска в 40 000 долларов за килограмм в некоторых случаях, конечная цена первой космической солнечной электростанции может достигать 20 миллиардов долларов.

Частные подрядчики

По мере того как мы входим в эру частного освоения космоса, что значительно снижает стоимость запуска, основная физика говорит о том, что доставка грузов в космос остается чрезвычайно дорогой.

«Эта тема пересматривается каждые 10 лет, когда технологии меняются, а значит меняется и экономическая сторона вопроса».

Яффе говорит, что война на Ближнем Востоке дала новые импульсы развитию космических солнечных станций, поскольку научные инженеры столкнулись с проблемой доставки энергии во враждебные районы. Многочисленные и спрятанные приемники могли бы улавливать космическую энергию и обеспечивать военных, которым не пришлось бы тащить опасные и дорогие дизельные генераторы по воде или воздуху.

«Если бы вы могли добывать электричество из космоса, вы наверняка задумались бы».

Вопросы безопасности

Есть два способа доставки энергии на Землю: в форме лазерных лучей или микроволн.

Вариант с лазерными лучами включает отправку небольших передающих лазеры спутников в космос и относительно низкую стоимость, от 500 миллионов до 1 миллиарда долларов. Самособирающиеся спутники еще больше снизят расходы, а лазеры небольшого диаметра будет довольно легко собирать на Земле.

Но с выдачей от 1 до 10 МВт понадобится много спутников для обеспечения достаточного количества энергии. Кроме того, у спутников будут проблемы с лазерной передачей во время облачной или дождливой погоды.

Вариант с микроволнами предполагает беспрепятственную передачу во время дождя, снега или других атмосферных условий и сможет передавать гигаватты энергии.

Микроволновая технология, по словам Яффе, существует много десятилетий: еще в 1964 году ученые смогли передать энергию на вертолет с помощью микроволн. Яффе говорит, что при большой области передатчика микроволны будут настолько рассеяны, что не будут представлять опасность для жизни. Но главным их недостатком остается необходимость сотни запусков в космос, которые позволят построить космическую станцию. Все это выливается в десятки миллиардов долларов.

«К сожалению, стоит отметить, общество не очень любит микроволны и лазеры, поскольку микроволны чаще ассоциируют с микроволновками на кухне, а лазеры - с космическими сражениями в научной фантастике».

Энергетический сэндвич

Исследование Яффе, сосредоточено на так называемых «сэндвичных модулях» - элемента солнечных батарей, которые преобразуют солнечный свет в энергию. Одна сторона «сэндвича» получает солнечную энергию с помощью фотоэлектрической панели, электроника в центре преобразует ток в радиоволну, а антенна на другой стороне отправляет пучок на землю.

«Люди, наверное, не знают, что радиоволны могут передавать энергию, - говорит Яффе. - Поскольку привыкли думать о радио в контексте связи, телефонов или телевизоров. Они не задумываются о том, что радиоволны могут передавать энергию».

Несмотря на то, что все технологии уже доступны для оснащения космической солнечной батареи, Яффе считает, что первая такая станция появится еще нескоро. Даже несмотря на то, что японцы сделали такую станцию одним из столпов своей космической программы.

«Без научно-исследовательской базы, которая у нас, в США, к примеру, исследует энергию термоядерного синтеза, едва ли мы добьемся прогресса. Если японцы добьются успеха в ближайшие пять лет, люди могут заговорить о том, почему мы ничего не делаем».

В конечном итоге, говорит Яффе, сложно сказать, что эта идея жизнеспособна, пока вы на самом деле не попробуете ее реализовать.

Под космической энергетикой понимается использование солнечного излучения в космосе как источника энергии. Пока этот вид энергетики является скорее идеей будущего, проекты в этой сфере только планируются. Тем не менее, вопрос энергетической безопасности стоит у человечества довольно остро. Мировые нефтяные, газовые, угольные запасы истощаются, сокращаются даже запасы урана с торием. Туманно и будущее термоядерной энергетики. Однако есть замечательный и совершенно бесплатный реактор термоядерного синтеза, который рассеивает энергию налево и направо – это наше Солнце. Да, на Земле очень бурно развивается солнечная энергетика. Но на поверхности нашей планеты, где бы ни находилась солнечная электростанция, существует один недостаток – ночь, кроме этого облака и пыль, а также другие неудобства.

Но в этом случае логичный вывод – монтировать электростанции в космосе. Там Солнце светит постоянно. К примеру, можно расположить электростанцию на геостационарную орбиту. Первая идея СКЭС (Солнечной космической электростанции), которая будет поставлять энергию на нашу планету, была высказана Питером Глейзером, американским ученым чешского происхождения, в 1968 году. Он в свое время создал лунный отражатель-дальномер, который был установлен на Луне экспедицией «Аполлон-11». Идея СКЭС была опубликована Питером Глейзером в журнале Science и сразу запатентована им. В те времена казалось, что эта идея будет воплощена в ближайшем будущем, но этого до сих пор не произошло.

Космическая солнечная станция

Американская компания Solaren, на заре 2009 года, подписала контракт с энергетической компанией Калифорнии, о начале поставке электрической энергии произведенной в космосе мощностью 200 МВт. уже с 2016 года. То есть уже через пять лет фирма, в которой работают всего около десяти человек, дала обещание не только соорудить космическую электростанцию на земной орбите, но и обеспечить потребности 250 миллионов человек в электрической энергии. Стоит заметить, что 200 МВт., это приблизительно пятая часть вырабатываемой мощности одной из крупнейших российских ГЭС – Нижнекамской ГЭС.

Тогда же в 2009 году, группа из шестнадцати японских компаний, в которой также состоит такой гигант как Mitsubishi, приняли соглашение о постройки своей СКЭС мощностью 1ГВт. к 2030 году. Официально руководить всем проектом будет Mitsubishi Heavy Industries. Первоочередной задачей группы является создание технологии для передачи энергии беспроводным методом, решение которой планируется завершить к 2013 году. По словам исследователей, теоретически передать энергию из космоса на Землю можно при помощи микроволнового излучения. Но как это осуществить на практике, пока не понятно. Затруднительно пока оценить и стоимость космического электричества, но ясно, что 1 ГВт. энергии СКЭС хватит для снабжения около 300 тысяч жилых домов электричеством. По расчетам ученых, для создания генератора такой большой мощности на орбите Земли, потребуется соорудить массив из солнечных фотоэлементов на высоте 36 000 км. и общей площадью 4 км2. Зато генерация электроэнергии будет происходить круглосуточно, без перерывов, невзирая ни на какие погодные условия, а прямые солнечные лучи только увеличат мощность вырабатываемой энергии в четыре раза по сравнению с земными солнечными батареями. Глава одной из компаний занятой в проекте, Хироши Йошида, заметил, что уже к 2040 году у человечества будут батареи, генерирующие в сотни раз больше мощности, чем сегодняшние солнечные панели.

Что касается экономической составляющей этого проекта, то в Mitsubishi Heavy Industries согласились, что данный проект станет самым дорогостоящим проектом из всех возможных в этой области, однако именно такой подход позволит получить максимальную отдачу. Окончательные затраты на проект пока не определены, но учредители на первом этапе согласны вложить в это дело 21 миллиард долларов США. Для снижения общих расходов Япония собирается наладить собственную космическую доставку. Однако при любых обстоятельствах, отдачу от таких затрат разработчики проекта ждут до 2040 года.

Самые рискованные части проекта разработчики собираются отрабатывать на специально запущенном тестовом спутнике. Это будет солнечная электростанция в миниатюре. Японское космическое агентство JAXA сообщило, что пробник будет запущен в 2015 году. При удачном испытании, уже в 2016 году японские компании начнут работы по монтажу основной электростанции на околоземной орбите. Исследователи прогнозируют, что пока, в ближайшие полвека, космическая электростанция навряд ли заменит другие традиционные источники энергии и станет основной. Но свою нишу космическая энергетика обязательно займет. Ну а первую в мире космическую электростанцию можно будет рассматривать в качестве аварийного источника питания самых важных объектов медицинского, военного, телекоммуникационного и правительственного назначения. При случаях каких-либо стихийных бедствий, военных нападений подключение объектов к «космическому току» займет считанные часы. Но вот обесточить космическую электростанцию, лишив стратегические объекты энергии, практически невозможно, даже в случае крупномасштабных стихийных бедствий. Таким образом, ученые делают ставку не только на неиссякаемость энергии и ее мощность, но и на независимость и надежность. Все компании занятые в этом проекте полны оптимизма.