Непрерывные и дискретные математические модели. Цп автоматизированные системы управления и промышленная безопасность Модели состояния динамических систем

Процессы в линейных импульсных и цифровых системах автоматического управления описываются дискретно – разностными уравнениями вида:

где x(n) –решетчатая функция входного сигнала; y(n) –решетчатая функция выходного сигнала, которая определяется решением уравнения (1.2); b k – постоянные коэффициенты;
– разность к – го порядка; t=nT , где nT n– ый момент времени, T – период дискретности (в выражении (1.2) он условно принят за единицу).

Уравнение (1.2) можно представить в другом виде:

Уравнение (1.3) представляет собой рекуррентное соотношение, которое позволяет вычислить любой (i+1) –й член последовательности по значениям предыдущих её членов i,i-1,... и значению x(i+1).

Основным математическим аппаратом моделирования цифровых автоматических систем является Z– преобразование, которое базируется на дискретном преобразовании Лапласа. Для этого необходимо найти импульсную передаточную функцию системы, задаться входной переменной и, варьируя параметрами системы, можно найти лучший вариант проектируемой системы.

1.3.4. Дискретно – стохастические модели (р - схемы)

К дискретно – стохастической модели относится вероятностный автомат . В общем, виде вероятностный автомат является дискретным потактным преобразователем информации с памятью, функционирование которого в каждом такте зависит только от состояния памяти в нем и может быть описано статистически. Поведение автомата зависит от случайного выбора.

Применение схем вероятностных автоматов имеет важное значение для проектирования дискретных систем, в которых проявляется статистически закономерное случайное поведение.

Для Р – автомата вводится аналогичное математическое понятие, как и для F – автомата. Рассмотрим множество G, элементами которого являются всевозможные пары (x i ,z s ) , где x i и z s элементы входного подмножества X и подмножества состояний Z соответственно. Если существуют две такие функции и
, что с их помощью осуществляется отображение
и
, то говорят, чтоопределяет автомат детерминированного типа.

Функция переходов вероятностного автомата определяет не одно конкретное состояние, а распределение вероятностей на множестве состояний

(автомат со случайными переходами). Функция выходов также есть распределение вероятностей на множестве выходных сигналов (автомат со случайными выходами).

Для описания вероятностного автомата введем в рассмотрение более общую математическую схему. Пусть Ф – множество всевозможных пар вида (z k ,y j ) , где y j – элемент выходного подмножества Y . Далее потребуем чтобы любой элемент множества G индуцировал на множестве Ф некоторый закон распределения следующего вида:

элементы из Ф...

...

...

где – вероятности перехода автомата в состояние z k и появления на выходе сигнала y j , если он был в состоянии z s и на его вход в этот момент времени поступал сигнал x i .

Число таких распределений, представленных в виде таблиц равно числу элементов множества G. Если обозначить это множество таблиц через В, то тогда четверку элементов
называютвероятностным автоматом (Р – автоматом). При этом
.

Частным случаем Р– автомата, задаваемого как
являются автоматы, у которых либо переход в новое состояние, либо выходной сигнал определяются детерминировано(Z– детерминированный вероятностный автомат, Y– - детерминированный вероятностный автомат соответственно).

Очевидно, что с точки зрения математического аппарата задание Y – детерминированного Р – автомата эквивалентно заданию некоторой марковской цепи с конечным множеством состояний. В связи с этим аппарат марковских цепей является основным при использовании Р– схем для аналитических расчетов. Подобные Р– автоматы используют генераторы марковских последовательностей при построении процессов функционирования систем или воздействий внешней среды.

Марковские последовательности , согласно теореме Маркова, –это последовательность случайных величин, для которой справедливо выражение

,

где N – количество независимых испытаний; D– - дисперсия.

Такие Р– автоматы (Р– схемы) могут быть использованы для оценки различных характеристик исследуемых систем как для аналитических моделей, так и для имитационных моделей с использованием методов статистического моделирования.

Y – детерминированный Р– автомат можно задать двумя таблицами: переходов (табл.1.1) и выходов (табл.1.2).

Таблица 1.1

Таблица 1.2

Где P ij – вероятность перехода Р– автомата из состояния z i в состояние z j , при этом
.

Таблицу 1.1 можно представить в виде квадратной матрицы размерности
. Такую таблицу будем называть матрицей переходных вероятностей или просто матрицей переходов Р- автомата , которую можно представить в компактной форме:

Для описания Y– детерминированного Р–автомата необходимо задать начальное распределение вероятностей вида:

где d k– вероятность того, что в начале работы Р– автомат находится в состоянии z k , при этом
.

И так, до начала работы Р– автомат находится в состоянии z 0 и в начальный (нулевой) такт времени меняет состояние в соответствии с распределением D. После этого смена состояний автомата определяется матрицей переходов Р. С учетом z 0 размерность матрицы Р р следует увеличить до
, при этом первая строка матрицы будет (d 0 ,d 1 ,d 2 ,...,d k ) , а первый столбец будет нулевым.

Пример. Y– детерминированный Р– автомат задан таблицей переходов:

Таблица 1.3

и таблицей выходов

Таблица 1.4

С учетом таблицы 1.3 граф переходов вероятностного автомата представлен на рис.1.2.

Требуется оценить суммарные финальные вероятности пребывания этого автомата в состоянии z 2 и z 3 , т.е. когда на выходе автомата появляются единицы.

Рис. 1.2. Граф переходов

При аналитическом подходе можно использовать известные соотношения из теории марковских цепей и получить систему уравнений для определения финальных вероятностей. Причем начальное состояние можно не учитывать в виду того, что начальное распределение не оказывает влияние на значения финальных вероятностей. Тогда таблица 1.3 примет вид:

где
– финальная вероятность пребыванияY– детерминированного Р– автомата в состоянии z k .

В результате получаем систему уравнений:

(1.4)

К данной системе следует добавить условие нормировки:

(1.5)

Теперь решая систему уравнений (1.4) совместно с (1.5), получаем:

Таким образом, при бесконечной работе заданного автомата на его выходе будет формироваться двоичная последовательность с вероятностью появления единицы, равной:
.

Кроме аналитических моделей в виде Р– схем можно применять и имитационные модели, реализуемые, например, методом статистического моделирования.

6. Непрерывные и дискретные модели.

Будем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через В.

Пусть М=М(X,Y, Z ), где X – множество входов, Y – выходов, Z – состояний системы. Схематически можно это изобразить: X Z Y .

Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта – вид математического выражения, которое связывает его входные и выходные переменные (например: у= au + bv ). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b ).

Непрерывность и дискретность . Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов.

Свойство непрерывности и дискретности выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z , Т, Х, Y ведет к модели, называемой дискретной, а их непрерывность - к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего – замена непрерывной математической функции на набор ее значений в фиксированных точках.

Риск, как и лежащая в его основе неопределенность, подразумевает возможность наступления различных по последствиям исходов, каждый из которых вероятен в большей или меньшей степени. С математической точки зрения это может быть описано (и далее измерено) с использованием случайных величин (СВ). Существуют дискретные и непрерывные случайные величины. Дискретными называют такие СВ, которые могут принимать только конечное или счетное множество значений. Непрерывные СВ могут принимать любые значения из некоторого замкнутого или открытого

(в т.ч. бесконечного) интервала.

В самом простом случае, когда существует конечное множество исходов, каждый из которых имеет фиксированные (неслучайные) последствия, риск может быть описан с помощью одной дискретной

с луча йно й ве личины.

Риск убытков от хищения автомобиля в течение некоторого периода времени для собственника может быть описан дискретной случайной величиной, имеющей два исхода с фиксированными последствиями (рис. 5.1):

1) «хищение не произошло», последствия равны нулю;

2) «хищение произошло», последствия равны стоимости автомобиля.

Для обоих исходов последствия принимают заранее известные неслучайные значения.

Риск хищения автомобиля

Начальное состояние

Возможные исходы

Последствия

(фиксированные)

Стоимость автомобиля

Рис. 5.1. Пример дискретной модели риска хищения автомобиля

Рис. 5.2. Пример комбинированной дискретно-непрерывной модели риска повреждения автомобиля в ДТП

Когда риск связан с изменением показателя, который может принять любое значение на некотором интервале, можно достаточно просто моделировать риск, описав данный показатель с помощью непрерывной случайной величины, распределенной на ука занно м интер ва ле.

Риск инвестора, купившего акции конкретного эмитента по определенной цене. В будущем возможны отклонения курса этих акций как в большую, так и в меньшую сторону по отношению к цене покупки. При этом отклонения в меньшую сторону являются неблагоприятными, что и составляет риск инвестора. Он может быть описан с помощью непрерывной случайной величины, характеризующей его потери или выгоду (т.е. последствия) в зависимости от цены акции. Эти последствия могут принимать любые значения в интервале от «минус цена покупки» до «плюс бесконечность». Однако, если брать достаточно короткий период прогнозирования, то курс акций, скорее всего, не уйдет далеко от ожидаемого значения, хотя такие отклонения все-таки возможны.

Дискретные или непрерывные модели могут комбинироваться при описании конкретной рисковой ситуации. Например, если в дискретной модели последствия всех или отдельных исходов могут принимать множество значений непредвиденным для субъекта способом, то они должны описываться непрерывной случайной ве личино й.

В результате ДТП автомобиль может получить различные повреждения, убытки от которых могут достичь его стоимости (или даже превысить ее). Однако такие тяжелые последствия маловероятны. Предсказать заранее, какие именно повреждения получит автомобиль и каков будет ущерб, нельзя. Поэтому риск убытков от повреждения автомобиля в дорожно-транспортном происшествии в отдельной поездке может быть описан с помощью двух случайных величин (рис. 5.2):

1) дискретной, характеризующей возможность наступления ДТП и имеющей два исхода («ДТП не произошло» и «ДТП произошло»), и

2) непрерывной, описывающей размер ущерба (последствия) в случае его наступления.

При этом убытки (последствия) от исхода «ДТП не произошло» неслучайны и равны нулю.

В зависимости от особенностей описываемого (моделируемого) риска, целей исследования и требуемой подробности одну и ту же ситуацию неопределенности можно представлять как в виде дискретной, так и в виде непрерывной модели, а также в виде их ком б ина ции.

Риск хищения имущества на предприятии в течение года можно количественно описать с использованием:

а) дискретной модели, использующей дискретную случайную величину (СВ), которая может принимать два («краж не было» –

«кража(и) были») или более значений («краж не было» – «была

1 кража» – «было 2 кражи» и т.д.);

б) непрерывной модели, при которой риск описывается непрерывной СВ «убытки от краж за год»;

в) комбинации указанных моделей, сочетающей, например, использование дискретной СВ «количество краж в течение года» и непрерывной СВ «размер убытка от одной кражи».

В любом случае, когда риск описывается с использованием случайных величин (дискретных или непрерывных), необходимо знать их распределение (его вид и значения параметров распределения) или хотя бы численные характеристики этих величин (прежде всего, математическое ожидание, дисперсию или среднеквадратическое отклонение). Тогда можно говорить о том, что риск измерен (количественно оценен). В результате изучения различных случайных процессов для некоторых случайных величин, используемых при моделировании рисков, подобраны наиболее удачно описывающие их виды распределения.

Полная информация о распределении описывающей риск случайной величины, безусловно, очень полезна. Однако для простого сравнения рисков часто достаточно знать только две характеристики: математическое ожидание и численную характеристику разброса значений относительно него (дисперсию или среднеквадратическое отклонение (СКО)).

Предварительные замечания. Рассмотрим многомерную систему автоматического управления, где в качестве регулятора используется БЦВМ, связанная с непрерывным объектом с помощью ЦАП и АЦП (рис.1.4). Будем считать, что измеряемый векторный выход объектаквантуется с помощью АЦП в моментытак, что на входе БЦВМ действует векторная решётчатая функция. В БЦВМ реализуется определённый алгоритм управления и на её выходе формируется последовательность дискретных значений управляющих воздействий, которую также можно рассматривать как векторную решётчатую функцию. Здесь для простоты положим, что разрядность ЦАП и АЦП достаточно высока, так что эффектом квантования по уровню можно пренебречь.

Пусть непрерывный объект представляется дифференциальными уравнениями в форме Коши

(2.4.1)

где –числовые матрицы соответствующих размеров.

Будем считать, что ЦАП и АЦП работают синхронно (с одинаковым периодом), но не синфазно, и пусть выдача рассчитанных управлений производится с задержкой на, где–относительное запаздывание, так что на ЦАП поступает смещённая решётчатая функция. Таким образом, эквивалентная схема принимает вид рис.2.5.

Рис. 2.5.

Очевидно, что непрерывный объект управления (2.4.1) совместно с ЦАП, АЦП и звеном задержки можно рассматривать как некоторую эквивалентную дискретную систему, на входе и выходе которой действуют решётчатые функцииисоответственно. Как и в случае импульсных систем, разностные уравнения, описывающие эту систему, должны быть такими, чтобы их решения относительно переменных выхода и состояний совпадали прис соответствующими непрерывными функциями. Эти разностные уравнения как раз и будут являться дискретной моделью непрерывного объекта в системе управления с БЦВМ в контуре. Причём, эта модель, очевидно, будет зависеть от способа восстановления непрерывного процессапо его дискретам.

Применение экстраполяции нулевого порядка. Пусть операция ЦА-преобразования сопровождается формированием управленияметодом фиксации на период (экстраполяция нулевого порядка). Тогда функциябудет кусочно-постоянной (рис.2.6), удовлетворяющей условию

Для определения дискретной модели объекта (2.4.1) при условии (2.4.2) рассмотрим -ый интервал дискретности.

Рис. 2.6.

В соответствии с рис.2.6, этот интервал можно разбить на два под-интервала. На первом подинтервале, когда, на объект действует постоянное управление, а на втором – постоянное управление. Учитывая сказанное и используя формулу Коши (2.3.3), определим состояниев конце интервала по известному состояниюв начале интервала. Будем иметь

Преобразуем это выражение, используя для первого интеграла замену , а для второго –. Тогда после преобразований и перехода к решётчатым функциям получим

Обозначим

и учтём, что квантование выхода производится в моменты. Тогда окончательно, искомая дискретная модель примет вид

. (2.4.4)

Анализируя формулы (2.4.3), заметим, что матрицы изависят от величины запаздывания. Так, если(запаздывание отсутствует), тои мы получим дискретную модель непрерывного объекта без запаздывания. Если же, то, и тогда уравнения (2.4.4) будут представлять дискретную модель с "чистым" запаздыванием на один такт.

Отметим также, что при разностные уравнения (2.4.4) формально не являются уравнениями в форме Коши, так как в правой части первого уравнения присутствует переменная, сдвинутая на один такт по отношению к другим. Для устранения этого "недостатка" введем вектор дополнительных состояний , . Тогда нетрудно показать, что расширенная дискретная модель с вектором состояний , представится в следующем эквивалентном виде

(2.4.5)

где - новый вектор измеряемых переменных объекта, расширенных за счет управлений из предыдущего такта.

Таким образом наличие запаздывания привело к увеличению размерности дискретной модели по сравнению с размерностью непрерывного объекта. Это позволяет учесть запаздывание при синтезе алгоритмов работы БЦВМ (дискретных регуляторов), так как формально уравнения (2.4.5) представляют дискретную модель объекта без запаздывания, но повышенной размерности.

Применение экстраполяторов -го порядка. При рассмотрении этого вопроса для простоты ограничимся случаем . Кроме того, также для простоты, будем считать, что управлениеявляется скалярным (). Тогда, если для реализации этого управления используется метод экстраполяции-го порядка, то на интервалеуправлениебудет определяться выражением (1.4.10), то есть

, (2.4.6)

где производные () могут быть вычислены по дискретам,в соответствии с алгоритмом (1.4.16).

Переходя к определению дискретной модели непрерывного объекта (2.4.1) запишем состояние этого объекта в конце-го интервала дискретности по известному состояниюв начале интервала. Используя формулу Коши, будем иметь

.

Подставляя (2.4.6) и производя замену , после преобразований и перехода к решетчатым функциям, получим

Здесь учтено, что значения производных остаются постоянными в течение каждого интервала дискретности. Обозначим

,,.

Тогда (2.4.7) примет вид

.

Введем матрицу . Тогда, если использовать обозначение (1.4.12) для вектора, получим

где - определяется выражением (1.4.14), а- обозначает-мерный вектор (1.4.12), составленный из дискрет.

Обозначим столбцы матрицы через. Тогда учитывая структуру вектора, окончательно получим искомую дискретную модель

. (2.4.9)

Заметим, что несмотря на то, что по предположению управляющее воздействие формируется без задержки по отношению к моментам съема информации, дискретная модель (2.4.9) содержит запаздывания по управлению натактов одновременно. Как уже отмечалось в разделе 1.4, этот факт обусловлен использованием для формирования управленияэкстраполяции-го порядка.

Запишем полученную модель в эквивалентной форме с помощью расширенного состояния. Для этого введем вспомогательные переменные

Очевидно, что в этом случае

Тогда, если ввести вектор расширенного состояния

а также новый вектор измеряемых переменных

расширенный за счет управлений из предыдущих тактов, то (2.4.9) можно представить в следующем эквивалентном виде

, (2.4.10)

где ,,- матрицы размеров,,соответственно, имеющие следующую блочную структуру

, ,. (2.4.11)

Уравнения (2.4.10) представляют дискретную модель непрерывного объекта в системе управления с БЦВМ и экстраполятором -го порядка. Эта модель составлена для скалярного управления, и учет экстраполятора привел к тому, что ее размерность увеличилась напо сравнению с размерностью непрерывного объекта. Очевидно, что если рассматривать случай векторного управления, то формально дискретная модель (2.4.10) останется без изменения, но вводимые дополнительные переменныестанут векторными и общая размерность модели составит.

Дискретные модели. Однако деление систем на непрерывные и дискретные во многом произвольно зависит от цели и глубины исследования. Часто непрерывные системы приводятся к дискретным при этом непрерывные параметры представляются как дискретные величины путем введения разного рода шкал балльных оценок и т. Дискретные системы изучаются с помощью аппарата теории алгоритмов и теории автоматов.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Дискретные модели относятся к системам, все элементы которых, а также связи между ними (т. е. обращающаяся в системе информация) имеют дискретный характер. Следовательно, все параметры такой системы дискретны.

Непрерывные модели. Противоположное понятие — непрерывная система. Однако деление систем на непрерывные и дискретные во многом произвольно, зависит от цели и глубины исследования. Часто непрерывные системы приводятся к дискретным (при этом непрерывные параметры представляются как дискретные величины путем введения разного рода шкал, балльных оценок и т. п.). Дискретные системы изучаются с помощью аппарата теории алгоритмов и теории автоматов. Их поведение может описываться с помощью разностных уравнений.

Другие похожие работы, которые могут вас заинтересовать.вшм>

16929. Дискретные математические модели в профессиональной подготовке студентов экономических специальностей ВУЗов 10.92 KB
Дискретные математические модели в профессиональной подготовке студентов экономических специальностей ВУЗов Сложившаяся в настоящее время практика преподавания курса Дискретная математика для студентов экономических специальностей ВУЗов приводит к тому что они фактически не обладают знаниями и умениями позволяющими успешно решать широкий круг практических задач использующих дискретные объекты и модели не имеют развитого логического мышления у них отсутствует культура алгоритмического мышления. Для восполнения указанных пробелов...
15214. ЦИФРОВЫЕ И ДИСКРЕТНЫЕ СИГНАЛЫ 97.04 KB
Обработкой сигнала называют процесс преобразования сигнала исходящего от источника информации с целью освобождения от различного рода помех и от информации вносимой косвенным характером измеряемого физического процесса и нелинейными характеристиками датчиков а также с целью представления полезной информации в наиболее удобной форме. С учетом математической модели сигнала и задач обработки строится математическая модель процесса ЦОС. Классы моделей систем ЦОС отличаются по видам решаемых задач...
15563. СПЕЦИАЛЬНЫЕ ДИСКРЕТНЫЕ СЛУЧАЙНЫЕ ПРОЦЕССЫ 58.05 KB
Модель авторегрессии выражает текущее значение процесса через линейную комбинацию предыдущих значений процесса и отсчета белого шума. Название процесса – термин математической статистики где линейная комбинация x = 1y1 2 y2 p yp z = z Ty связывающая неизвестную переменную x с отсчетами y = T называется моделью регрессии x регрессирует на y. Для стационарности процесса необходимо чтобы корни k характеристического уравнения p 1p-1 p =0 лежали внутри круга единичного круга I 1 . Корреляционная...
16918. Дискретные структурные альтернативы: методы сравнения и следствия для экономической политики 11.74 KB
Дискретные структурные альтернативы: методы сравнения и следствия для экономической политики Современная экономическая теория в своей основе даже если далеко не всегда есть основания идентифицировать специфические черты соответствующей исследовательской программы является теорией индивидуального выбора что обусловливает высокий статус принципа методологического индивидуализма в исследованиях посвященных самым разнообразным проблемам Шаститко 2006. Индивидуальный выбор строится на таких фундаментальных основаниях как ограниченность...
3111. Инвестиции и сбережения в кейнсианской модели. Макроэкономическое равновесие в модели “кейнсианский крест” 27.95 KB
Инвестиция – это функция ставки процента: I=Ir Эта функция убывающая: чем выше уровень процентной ставки тем ниже уровень инвестиций. По взглядам Кейнса сбережения – это функция доходаа не процентной ставки: S=SY Т. инвестиции являются функцией процентной ставки а сбережения – функцией дохода.
5212. Уровни модели OSI и TCP/IP 77.84 KB
Сетевая модель - теоретическое описание принципов работы набора сетевых протоколов, взаимодействующих друг с другом. Модель обычно делится на уровни, так, чтобы протоколы вышестоящего уровня использовали бы протоколы нижестоящего уровня
8082. Модели элементов 21.98 KB
Совокупность элементов модели дискретного устройства называется базисом моделирования. Очень часто базис моделирования не совпадает с элементным базисом. Обычно из более сложной модели базиса моделирования можно получить более простую модель. В данном случае совпадение 2х соседних итераций является критерием окончания моделирования одного входного набора.
2232. Цветовые модели 475.69 KB
О работе с цветом Свойства цвета и соответствие цветов Цветовой круг и дополнительные цвета Цветовой круг демонстрирует соотношение между тремя первичными цветами красным зеленым и синим и тремя первичными цветами голубым пурпурным и желтым. Цвета расположенные друг напротив друга называются дополнительными цветами. Если вы сделали фотографию в которой избыток зеленого цвета то этот эффект можно подавить добавив соответствующий дополнительный цвет пурпурный смесь красного и синего согласно модели RGB. Дополнительный цветовой...
7358. Модели обучения 16.31 KB
Традиционное обучение представляет собой обучение ЗУН по схеме: изучение нового - закрепление - контроль - оценка. Ученики выступают как объекты управления. Со стороны учителя преобладает авторитарно-директивный стиль управления и инициатива обучаемых чаще подавляется, чем поощряется
7155. Цвет и цветовые модели 97.22 KB
Чтобы успешно применять их в компьютерной графике необходимо: понимать особенности каждой цветовой модели уметь определять тот или иной цвет используя различные цветовые модели понимать как различные графические программы решают вопрос кодирования цвета понимать почему цветовые оттенки отображаемые на мониторе достаточно сложно точно воспроизвести при печати. Так как цвет может получиться в процессе излучения и в процессе отражения то существуют два противоположных метода его...