Примеры приливно отливных течений мирового океана. Приливно-отливные явления. Что такое обратное течение и как оно образуется

Приливно-отливные колебания уровня океана сопровождаются горизонтальным перемещением водных масс, которое носит название приливно-отливного течения. Поэтому судоводитель должен учитывать не только изменение глубин, но и приливно-отливное течение, которое может достигать значительной скорости. В районах, где наблюдаются приливы, судоводитель должен быть всегда осведомлен о высоте прилива и элементах приливно-отливного течения.

Приливы позволяют судам с большой осадкой заходить в некоторые порты, расположенные в мелководных бухтах и устьях рек.

В некоторых местах приливы усиливаются сгонно-нагонными явлениями, что приводит к значительному повышению или понижению уровня, а это в свою очередь может привести к авариям судов, стоящих под грузовыми операциями у причалов или на рейде.

Характер и величина приливов в Мировом океане отличаются большим разнообразием и сложностью. Величина прилива в океане не превышает 1 м. В прибрежных районах в связи с уменьшением глубин и усложйением рельефа дна характер приливов значительно изменяется по сравнению с приливами в открытом океане. У прямолинейных берегов и вдающихся в океан мысов величина прилива колеблется в пределах 2-3 м; в прибрежной части заливов и при сильно изрезанной береговой линии она достигает 16 м и более.

Например, в Пенжинской губе (Охотское море) прилив достигает 13 м. У советских берегов Японского моря высота его не превышает 2,5 м.

В морях высота прилива зависит от того, какая имеется связь у данного моря с океаном. Если море далеко вдается в сушу и имеет узкий и мелководный пролив с океаном, то приливы в нем обыкновенно невелики.

В Балтийском море приливы настолько незначительны, что измеряются сантиметрами. Высота прилива в Кале 7 см, в Финском и Ботническом заливах около 14 см, а в Ленинграде около 5 см.

В Черном и Каспийском морях приливы почти незаметны.

В Баренцевом море приливы имеют полусуточный характер.

В Кольском заливе они достигают 4 м, а у Иоканских островов - до 6 м.

В Белом море приливы полусуточные. Наибольшая высота прилива наблюдается на Терском берегу в горле моря, где у Орловского маяка она доходит до 8,5 ж, а в Мезенской губе - до 12 м. В других районах этого моря приливы значительно меньше; так, в Архангельске около 1 м, Кеми - 1,5 ж, а Кандалакше - 2,3 м.

Приливная волна, проникая в устье рек, способствует колебанию их уровня, а также существенно влияет на скорость течения воды в устьях. Так, нередко скорость приливного течения, преобладая над скоростью реки, изменяет течение реки на обратное.

Существенное влияние на приливно-отливные явления оказывают ветры.

Всестороннее изучение и учет приливно-отливных явлений имеет большое значение для безопасности судоходства.

Течение, которое направляется в сторону движения приливной волны, называется приливным, противоположное - отливным.

Скорость приливно-отливных течений прямо пропорциональна величине прилива. Следовательно, для определенного пункта скорость приливно-отливных течений в сизигию будет значительно больше скорости в квадратуру.

С увеличением склонения Луны, а также при перемещении Луны от апогея к перигею скорость приливно-отливных течений увеличивается.

Приливно-отливные течения отличаются от всех других течений тем, что они захватывают всю толщу водных масс от поверхности до дна, лишь незначительно уменьшая свою скорость в придонных слоях.

В проливах, узких заливах и вблизи берегов приливно-отливные течения имеют обратный (реверсивный) характер, т. е. приливное течение направлено постоянно в одну сторону, а отливное имеет направление, прямо противоположное приливному.

В открытом море, вдали от берегов, и в средних частях достаточно широких заливов нет резкого изменения направления приливно-от- ливного течения на обратное, т. е. так называемой смены течений.

В этих местах чаще всего наблюдается непрерывное изменение направлений течения, причем изменение течения на 360° происходит при полусуточном характере прилива за 12 ч 25 мин и при суточном характере прилива за 24 ч 50 мин. Такие течения называются вращающимися течениями. Изменение направлений вращающихся течений в северном полушарии, как правило, происходит по часовой стрелке, а в южном- против часовой стрелки.

Смена приливного течения на отливное и наоборот происходит как в момент полных и малых вод, так и в момент среднего стояния уровня. Нередко смена течений происходит в промежуток времени между полной и малой водой. При смене приливного течения на отливное и обратное скорость течения равна нулю.

Общая схема приливно-отливных течений часто нарушается местными условиями. Учет приливно-отливного течения, как уже указывалось выше, имеет большое значение для безопасности плавания.

Данные об элементах приливно-отливных течений выбирают из Атласа приливно-отливных течений, а для некоторых участков морей- из таблиц, помещенных на навигационных картах. Общие указания о течениях даны также в лоциях морей.

Относительно постоянные течения показаны на картах стрелками. Направление каждой стрелки соответствует направлению действующего в данном месте течения, а цифры над стрелкой показывают скорость течения в узлах.

Направление и скорость приливно-отливных течений являются переменными величинами, и для того чтобы с достаточной полнотой отразить их на карте, нужна не одна стрелка, а система стрелок - векторная диаграмма.

При всей наглядности векторных диаграмм они излишне загружают карту и делают ее трудночитаемой. Во избежание этого элементы при- ливно-отливных течений принято показывать на карте в виде таблиц, помещаемых на свободных местах карты. Полной таблицей считается таблица, в которой есть следующие данные:

Часы относительно полной воды в ближайшем приливном пункте; надпись «Полная вода», соответствующая нулю часов, размещена по

Средине графы, от нее кверху в возрастающем порядке проставлены цифры часов до полной воды, а книзу также в возрастающем порядке- цифры часов после полной воды;

Географические координаты точек, обозначаемых обычно буквами А; Б; В; Г и т.д. ; те же самые буквы ставятся в соответствующих местах на карте;

Элементы течений: направление в градусах и скорость в сизигию и квадратуру в узлах (с точностью до 0,1 узла).

Определение скорости и направления течения на заданный момент в данном месте по Атласу находят следующим образом.

Вначале по Атласу определяют основной порт для данного места, после этого по Таблице приливов (ч. I) находят время полной воды, ближайшей к заданному, рассчитывают промежуток времени (в часах) до или после момента полной воды в основном порту относительно заданного момента. Затем на рассчитанный промежуток времени до наступления или после момента полной воды находят в Атласе направление течения (в градусах) и скорость (в узлах).

При плавании элементы приливно-отливных течений необходимо определять заранее; рекомендуется составить таблицу течений для заранее рассчитанных моментов (через 1 ч), соответствующих счислимым местам судна.

Ниже приведен пример таблицы приливно-отливных течений (табл. 7).

Скорость и направление приливо-отливных течений меняются непрерывно, а также от места к месту. Поэтому при счислении делается допуск о постоянстве таких течений в течение одного часа. В открытых морях приливо-отливные течения имеют замкнутые орбиты и, как правило, при ведении счисления не учитываются. Вблизи берегов и в узкостях скорости приливо-отливных течений могут достигать больших значений и их необходимо учитывать, чтобы предотвратить снос в опасные для плавания районы. Сведения о приливо-отливных течениях помещаются непосредственно на навигационных картах, в специальных атласах или в таблицах и приведены к моменту полной воды в основных пунктах, относительно которых произведены расчёты. Поэтому для выборки данных о течении надо знать время прохождения конкретного района с точностью 30 минут. Рассчитывается положение заданного времени плавания по судовым часам относительно момента наступления ближайшей полной воды в основном пункте. Для учёта приливо-отливного течения необходимо составить таблицу водного времени (табл.4.2). Так, если, например, Т пв = 11ч.20 мин, то 1 час до полной воды (водный час - I) соответствует промежутку времени от 09ч.50 мин до 10 ч.50 мин (Т ср = 10ч.20 мин); 1 час после полной воды (водный час + I): от 11ч. 50 мин. до 12ч.50 мин. (Т ср = 12ч.20 мин.); 2 часа после полной воды (водный час + II): от 12ч.50мин до 13ч.50мин (Т ср = 13ч.20мин) и т.д.

В атласах и таблицах приводят две скорости течения - сизигийную и квадратурную. Приближённо сизигийными считаются течения за два дня до новолуния и полнолуния и два последующих дня, а квадратурными - за два дня до первой и третьей фазы Луны и два последующих дня. В остальные дни течения считаются промежуточными и скорость их принимается как средняя арифметическая. Фазы или возраст Луны на данные сутки определяются по Морскому Астрономическому Ежегоднику.

Таблица 4.2

При учёте приливо-отливного течения решаются те же две задачи, что и при учёте постоянного течения. При прямой задаче постоянным будет ГКК, а, следовательно, и ИК, а ежечасно будет меняться ПУ b , т.к. ежечасно будут меняться элементы течения. А при обратной задаче постоянным будет ПУ b , а ежечасно будет меняться ИК, а следовательно и ГКК.

При плавании вдали от берегов в районах, где нет навигационных опасностей вместо того, чтобы откладывать течение каждый час можно найти геометрическую сумму векторов течения за 2 - 4 часа и выполнить прокладку построением двух линий: линии ИК и линии ПУ (рис.4.25).

Всегда надо иметь в виду, что элементы приливо-отливных течений могут под влиянием ветра значительно отличаться от выбранных из пособий. Поэтому при плавании в таких районах надо чаще определять место судна и уточнять из наблюдений действительные элементы приливо-отливных течений.

Расчёт элементов ветровых течений производится по Атласу течений, в котором приведены схемы ветрового течения для различных типов полей ветра (т.е. барических образований). Тип поля ветра сообщается в прогнозе погоды или определяется по синоптической карте. На схему ветрового течения, соответствующую данному типу поля ветра, наносится счислимое место судна и, по ближайшей стрелке на схеме, определяются направление и скорость течения.

При отсутствии Атласа течений скорость ветрового течения можно рассчитать по формуле

где U - скорость истинного ветра в м/с, которую надо определять 1 - 2 раза каждый час; j - широта места судна.

Время, за которое течение приобретает расчётную скорость называется временем развития и оно зависит от глубины района H и широты места. Время развития ветрового течения при ветре 4 - 5 баллов показано в табл. 4.3.

Приливно-отливные колебания уровня океана сопровождаются горизонтальным перемещением водных масс, которое носит название приливно-отливного течения. Поэтому судоводитель должен учитывать не только изменение глубин, но и приливно-отливное течение, которое может достигать значительной скорости. В районах, где наблюдаются приливы, судоводитель должен быть всегда осведомлен о высоте прилива и элементах приливно-отливного течения.

Приливы позволяют судам с большой осадкой заходить в некоторые порты, расположенные в мелководных бухтах и устьях рек.

Характер и величина приливов в Мировом океане отличаются большим разнообразием и сложностью. Величина прилива в океане не превышает 1 м. В прибрежных районах в связи с уменьшением глубин и усложнением рельефа дна характер приливов значительно изменяется по сравнению с приливами в открытом океане. У прямолинейных берегов и вдающихся в океан мысов величина прилива колеблется в пределах 2-3 м; в прибрежной части заливов и при сильно изрезанной береговой линии она достигает 16 м и более.

В морях высота прилива зависит от того, какая имеется связь у данного моря с океаном. Если море далеко вдается в сушу и имеет узкий и мелководный пролив с океаном, то приливы в нем обыкновенно невелики.

В Черном море приливы почти незаметны.

Приливная волна, проникая в устье рек, способствует колебанию их уровня, а также существенно влияет на скорость течения воды в устьях. Так, нередко скорость приливного течения, преобладая над скоростью реки, изменяет течение реки на обратное.
Течение, которое направляется в сторону движения приливной волны, называется приливным, противоположное - отливным.

Скорость приливно-отливных течений прямо пропорциональна величине прилива. Следовательно, для определенного пункта скорость приливно-отливных течений в сизигию будет значительно больше скорости, чем в квадратуру.

Приливно-отливные течения отличаются от всех других течений тем, что они захватывают всю толщу водных масс от поверхности до дна, лишь незначительно уменьшая свою скорость в придонных слоях.

Смена приливного течения на отливное и наоборот происходит как в момент полных и малых вод, так и в момент среднего стояния уровня. Нередко смена течений происходит в промежуток времени между полной и малой водой. При смене приливного течения на отливное и обратное скорость течения равна нулю.

Основным признаком, по которому производится классификация приливов, является преобладающий период, проявляющийся в наблюдаемых колебаниях, т.е. степень близости этих колебаний к полусуточному или суточному типам. Объективным количественным критерием определения характера прилива может служить соотношение амплитуд суточных и полусуточных гармоник.

В зависимости от этого отношения выделяют следующие типы приливов:
1) полусуточные приливы;
2) смешанные приливы;
а) неправильные полусуточные;
б) неправильные суточные;
3) суточные приливы.
Помимо основных типов приливов, выделяют так называемые аномальные приливы.

Полусуточные солнечные приливы имеют период, равный 12 ч, т.е. половине солнечных суток. Поэтому полные и малые воды в течение суток наблюдаются в одни и те же часы суток. Такие приливы имеют место в Котабару (о. Калимантан) и Эйре (южное побережье Австралии).

В течение лунных суток бывают две полные и две малые воды (рис. 17). Период равный половине лунных суток и составляет в среднем 12 ч. 25 мин. Высоты следующих друг за другом полных и малых вод мало отличаются, т. е. суточные неравенства почти отсуттвуют. Подъем и падание уровня протекают правильно, ход уровня выражается симметричной синсоидальной кривой. Время роста и время падения уровня практически равны.

Полусуточные параллактические приливы отличаются от обычных полусуточных сильно выраженным параллактическим неравенством. Величина параллактических приливов заметно меняется в зависимости от изменения расстояния между Луной и Землей. Таковы, например, приливы у мыса Кларка в заливе Креста (Берингового море).
Двойные полусуточные приливы (четвертьсуточные) характерны появлением у полусуточных приливов дополнительных полных и малых вод вследствие влияния мелководья. У таких приливов в течение лунных суток наблюдается четыре полных и четыре малых воды. Такие приливы в частности наблюдаются у села Зимняя Золотица (Белое море) и в районе порта Саутгемптон (Ла-Манш).

Судовые пособия по приливам:

Адмиралтейское пособие «Приливы и отливы».

Корректура для Адмиралтейских Таблиц приливов;

Информация об использовании карт и Таблиц Приливов при расчёте запаса воды под килем;

Таблицы приливов ВА «Admiralty Tide Tables» (NP201 - NP204)
и другие ВА публикации…

Каждый квартал (в конце марта, июня, сентября и декабря) публикуется список пособий по приливам.

Данные об элементах приливно-отливных течений выбирают из Атласа приливно-отливных течений, а для некоторых участков морей- из таблиц, помещенных на навигационных картах. Общие указания о течениях даны также в лоциях морей.

Определение скорости и направления течения на заданный момент в данном месте по Атласу находят следующим образом.

Вначале по Атласу определяют основной порт для данного места, после этого по Таблице приливов (ч. I) находят время полной воды, ближайшей к заданному, рассчитывают промежуток времени (в часах) до или после момента полной воды в основном порту относительно заданного момента. Затем на рассчитанный промежуток времени до наступления или после момента полной воды находят в Атласе направление течения (в градусах) и скорость (в узлах).

Учет приливов в судовождении

Степень изученности приливно-отливных явлений различна в разных районах Мирового океана, и в зависимости от этого все пункты Мира подразделяют на 3 группы.

1. Основные пункты (порты), для которых имеются подробные
данные о приливах на каждый день в ежегодных изданиях.

2. Дополнительные пункты, приписанные к основным, для которых
расчет приливов производится через основной пункт.

3. Пункты, для которых даются прикладные часы, позволяющие
рассчитывать время полных и малых вод и их высоты исходя их моментов кульминации Луны.

Таблицы приливов. Существуют специальные таблицы приливов, с помощью которых можно предвычислить важнейшие приливные элементы или путем несложных расчетов найти моменты и высоты приливов.

Для решения различных задач на предвычисление элементов для большего числа пунктов (портов) земного шара, посещаемых судами, служат таблицы приливов.

Ввиду многочисленности таких пунктов таблицы издаются в 4 томах.

Тома I и II состоят из трех частей: часть I - приливы в основных пунтках; часть II - поправки для дополнительных пунктов; часть III - приливные течения.

Тома III и IV - из двух частей: часть I-основные пункты, часть II-дополнительные пункты.

В каждом томе даны общие сведения и примеры пользования таблицами, вспомогательные таблицы, где основными являются «интерполяционные» таблицы для вычисления высот уровня моря на промежуточные между полными и малыми водами моменты времени.

В конце каждого тома дан алфавитный указатель для нахождения заданного пункта. При решении различных задач необходимо пользоваться пояснениями, даваемыми в таблицах приливов.

С помощью «Таблиц приливов» решаются следующие основные задачи.

1. Определение времени и высот полных и малых вод (утренних
и вечерних), продолжительности роста, продолжительности падения,
величины прилива и величины среднего уровня.

2. Определение поправки глубины на заданный момент.

3. Определение времени, когда поправка глубины достигнет
заданного значения.

Задачи для основных пунктов.

Пример 1. Определить время и высоты полных и малых вод, продолжительность роста и падения уровня, величину прилива и средний уровень в заданном пункте на указанную дату.

1. По таблице приливов находим страницу, на которой помещены данные для заданного пункта на указанную дату.

2. Выписываем моменты и высоты полных и малых вод tмв, tпв (по два значения) и hпв, hмв (по два значения).

3. Рассчитываем период падения Тп и период роста Тр для двух пар вод:

Тп = tмв1 -tпв1,

Тр = tпв2 -tм в2

4. Рассчитываем величину прилива:

В = hпв-hмв.

При работе с “Admiralty Tide Tables” для стандартных пунктов указываются на заданную дату значения моментов времени и высоты полной и малой воды. Если пункт дополнительный, то дня него находится стандартный пункт и поправки моментов и высот для данного дополнительного порта. Затем строится график по исправленным значениям моментов времени и высотам уровня прилива.

88. Международная Конвенция SOLAS с изменениями и дополнениями. Содержание Конвенции и её использование на судне.

(СОЛАС – 74) – International Convention for the Safety of life at Sea.

Конвенция СОЛАС в своих последовательных модификациях обычно рассматривается в качестве самого важного из всех международных договоров, относящихся к безопасности торговых судов. Первый вариант был принят в 1914, второй – в 1929, третий – в 1948-м. Принятие Конвенции 1960 года было первой главной задачей для ИМО после ее создания. Конвенция эта представляла значительный шаг вперед в модернизации правил и в отражение технических достижений в судоходстве. В 1974 году была принята совершенно новая конвенция, состоящая из 8 глав, которая включала в себя не только поправки, согласованные к этому времени, но и новую процедуру их принятия. (теперь они должны применяться в течении определенного периода времени) основная цель конвенции СОЛАС – определение минимальных стандартов по конвенции, оборудованию и плаванию судов, отвечающих их безопасности.

Комитет по безопасности на море (КБМ) Международной Морской Организации (ИМО) принял ряд поправок к Приложения СОЛАС-74. Ряд поправок был также принят Международной конференцией по глобальной морской системе связи при бедствии и для обеспечения безопасности 11 ноября 1988 г. Конвенция содержит сводный текст Конвенции СОЛАС-74, Протокола-88 к ней и всех поправок, принятых по апрель 1992 г. конференциями Комитета безопасности на море.

Рассмотрим: структуру конвенции:

Глава I. Общие положения.

часть А – применение, определение, исключения, изъятия;

часть В – проверки, освидетельствования, контроль, и т. д.

Глава II – 1. Конструкция – деления на отсеки и остойчивость, механические и электрические установки.

Глава II – 2. Конструкция – противопожарная защита, обнаружение и тушение пожара.

Глава III. Спасательные средства и устройства.

Глава VI. Радиосвязь.

Правило VI/741 требует, чтобы все суда после 1 февраля 1999 года были оборудованы соответствующими радиоустановками.

Глава V. Безопасность мореплавания.

Содержит21 правило: сообщения об опасностях, метеорологической службе, службе ледовой разведки, установлении схем движения судов, сообщения о бедствии, навигационном оборудовании, спасательных сигналах, навигационных изданиях, укомплектовании экипажей.

Глава VI. Перевозка грузов.

Эта глава основана на Кодексе безопасной практики размещения и крепления груза (Резолюция А 714 (17)), Кодексе безопасной практики перевозки навалочных грузов – ВС Code (Резолюция А934 (XI); Кодексе безопасной практики перевозки лесных палубных грузов (Резолюция А 719(17)).

Глава VII. Перевозка опасных грузов.

Основой для создания современных правил перевозки опасных грузов служит пункт 4 правила. 1 данной главы, а также применение международного кодекса морской перевозки опасных грузов – МОПОГ (IMDG Code), и соответствующих разделов кодекса безопасной перевозки навалочных грузов (BC Code).

Глава VIII. Ядерные суда.

Глава IX. Управление безопасной эксплуатацией судов.

Была принята на конференции по СОЛАС 24 мая 1994 года в Лондоне. Она предусматривает внедрение и применение международного кодекса по управлению эксплуатации судов и предотвращении загрязнения (МКУБ или ISM Code). Этот Кодекс является одним из самых важных документов по обеспечению безопасности мореплавания, принятых ИМО. ИМО заявляет, что МКУБ является предупреждающим документом, направленным на то, чтобы отклонения, которые могут так или иначе повлиять на безопасность на море, были заранее выявлены и предприняты действия, предупреждающие их развитие. Применение МКУБ позволяет уменьшать количество проишествий во много раз. Отсутствие сертификации по МКУБ автоматически переводят судоходную компанию в разряд аутсайдеров. Она выходит из международного судоходства, не подтвердив качество своих услуг и соответствие стандартам безопасности.

ГлаваX. О мерах безопасности для высокоскоростных судов.

Глава XI. Специальные меры по повышению безопасности в море.

89. Международная Конвенция MARPOL – 73/78.

Документ является комбинацией двух других соглашений, принятых соответственно в 1973 и 1978 гг. Государство, принявшее Протокол 1978, принимает также Конвенцию МАРПОЛ – 73, измененную и дополненную этим протоколом. Положения Конвенции и протокола должны рассматриваться и толковаться совместно как положения единого документа, получившего название МАРПОЛ 73/ 78 (вступил в силу 2 октября 1983).

Первым международным документом по предотвращению загрязнения моря нефтью была Конвенция, принятая в Лондоне в 1954 г. Однако этот документ не был достаточно эффективен для борьбы с загрязнениями, и после аварии танкера «Торри Каньон» было принято решение о его пересмотре. В 1973г. была принято Международная конвенция по предотвращению загрязнения с судов. До 1978 г. её ратифицировали только 3 государства.

Участившиеся аварии танкеров потребовали новых мер безопасности. Протокол 1978 г. к МАРПОЛ-73 является самостоятельным документом и включает в себя все положения 1973. Он вступил в силу в 1983 г.

В настоящее время вступило в силу 1, 2, 3 и 5 приложения, 4 – пока не вступало в силу. В 1995 г. приняты новые правила (поправки) к приложениям 1, 2, 3, 5: «Контроль за выполнением эксплуатационных требований».

В этом документе предусматриваются меры по предотвращению загрязнения с судов не только нефтью, но и другими вредными веществами, которые перевозятся на судах или образовываются в процессе их эксплуатации. Собственно правила предотвращения загрязнения с судов содержатся в пяти приложениях. Приложения I и II обязательны для выполнения странами-участницами Конвенции, остальные три – факультативны.

Применительно к предотвращению загрязнению моря нефтью положения Конвенции (приложение I) распространяются на все нефтяные танкеры валовой вместимостью 150 рт и более и на любые суда валовой вместимостью 400 рт и более. В соответствии с ними запрещается сброс в море нефти или нефтеводяной смеси с нефтяных танкеров, за исключением случаев, когда соблюдаются сразу все следующие условия: танкер находится за пределами особых районов (Средиземное море, Балтийское море с Балтийским и Финским заливами, Черное море, Красное море, включая Акабский заливы); танкер находится; на расстояние более 50 миль от берега; танкер имеет ход; мгновенная интенсивность сброса не превышает 60 л на милю и т. д.

Несколько менее строгие требования установлены в отношении разрешения сброса с неналивных судов валовой вместительностью 400 р. т. и более, а также из машинно-котельных отделений танкеров.

Соблюдаются все следующие условия, когда сброс нефти или нефтесодержащей смеси разрешен. Судно находится за пределами особого района, судно находиться на расстоянии более 12 миль от ближайшего берега, судно имеет ход, на судне действует оборудование для сепарации нефтеводяной смеси или система фильтрации нефти.

В Приложении II Конвенция МАРПОЛ – 73/78 предусмотрены критерии и меры контроля за сливом ядовитых жидких веществ, перевозимых наливом. Сливать их остатки разрешается только в приёмные устройства, сброс в море строго регламентирован.

Правила предусмотренные Приложением III применяются ко всем судам, перевозящим вредные вещества в упаковке, грузовых контейнерах, съёмных танках и цистернах. Порожние емкости, не очищенные от остатков такого вещества, рассматриваются как вредные вещества.

Приложение IV. Конвенция предусматривает обязательство государств по оборудованию судов специальными устройствами переработке и обеззараживанию сточных вод. Судну разрешается сбрасывать измельчённые и обеззараженные сточные воды за пределами 12 миль от ближайшего берега при условии, что они сбрасываются не мгновенно, а постепенно, при скорости судна 4 уз.

Приложение V содержит допустимые стандарты сброса отходов, образуемых в процессе нормальной эксплуатации судна и подлежащих постоянному или периодическому их удалению с судна. Запрещается выбрасывание в море всех видов пластмасс, включая синтетические тросы, рыболовные сети и т. д. Мусор, обладающий плавучестью разрешается выбрасывать за пределами 25 миль, а не измельченные пищевые и другие отходы – за пределами 12 миль от ближайшего берега. Сброс измельченного и размолотого мусора (пищевых и других отходов и т. д.) может производиться за пределами 3 миль от берега.

Судно BRT > 400 rt или пассажирское судно должно иметь выполнять «План управления мусором (процедуры сброса, хранения, обработки и удаления мусора)». Необходимо иметь и вести «Журнал операций с мусором».

Приливными или приливо-отливными течениями называются периодические горизонтальные перемещения водных масс, воз­никающие при явлении прилива под воздействием сил Луны и Солнца. Они составляют вторую неотъем­лемую сторону единого сложного явления прилива.

Эти течения отличаются от всех других течений, возникаю­щих в океанах и морях, тем, что захватывают всю толщину вод­ных масс от поверхности до дна, лишь немного уменьшая свою скорость в придонных слоях, где уже сказывается трение о дно

Необходимо отмстить, что характер движения приливных те­чении у берегов и в открытом море различен.

Вблизи берегов, особенно в узких проливах, заливах, бухтах, устьях рек и т. д., приливные течения имеют обратимый (ревер­сивный) характер, т. к. приливные и отливные течения обратны по направлению.

Для полусуточного течения движение идет с возрастающей скоростью около 3 час, затем с убывающей скоростью в продол­жение следующих 3 час, после чего направление его изменяется на обратное, и цикл повторяется.

Для суточного течения движение в одном направлении про­исходит в продолжение 12 час. В первую половину этого перио­да течение идет с возрастающей скоростью, а во вторую - с убывающей. Смена направления реверсивных течений происхо­дит или около момента полной или малой воды, или при сред­нем уровне. Это зависит от того, будет ли приливная волна иметь характер стоячей или поступательной волны.

При смене реверсивных течений есть моменты, когда не на­блюдается никакого течения. В эти часы вода находится в по­кое. На наших северных морях это явление носит название ко­роткой воды.

В открытом море или в средних частях достаточно широких заливов приливные течения имеют несколько иной характер. Там нет так называемой смены течений. Приливные течения ни­когда не прекращаются, но направление их вместе с изменени­ем скорости течений непрерывно изменяется в северном полу­шарии по часовой стрелке, а в южном - против часовой стрел­ки. Течения в таких местах «обходят» всю картушку компаса в течение либо 12 час 25 мин (при полусуточном характере при­лива), либо 24 час 50 мин (при суточном характере прилива). Течения такого характера получили специальное название вращающихся.

Орбиты частиц воды, описываемые при вращающихся тече­ниях, могут быть простыми, почти круговыми, и могут быть сложными, замкнутыми, кривыми фигурами.

Сведения о приливо-отливных течениях даются в лоциях, па навигационных картах, в специальных таблицах и атласах. Приливные течения в различных местах по-разному меняют­ся относительно полных и малых вод, по в навигационных по­собиях (таблицах и атласах) они обычно даются на каждый це­лый час относительно полной воды в каком-либо пункте, приня­том за основной.

Приливные песчаные гряды представляют собой удлиненные песчаные тела, сформированные приливно-отливными течениями.[ ...]

Приливные дельты (дельты приливного потока) формируются в устье протоки на стороне лагуны, обращенной к суше, и лучше всего развиты в приливных протоках с преобладанием волновых процессов, где волны усиливают приливное течение . Вновь образованная приливная дельта представляет собой серию перекрывающихся конусов или изогнутых лопастей, как, например, в порту Чатем, шт. Массачусетс, где две слившиеся лопасти перекрыты прямолинейными и синусоидно изогнутыми крупными волновыми знаками приливно-отливного течения, но с преобладанием приливного потока . Со временем приливное течение сосредоточивается в пределах русла, и зрелая приливная дельта представляет собой наклонную плоскость, рассеченную приливными каналами и расчлененную на серию намывов и покровов, образованных отливным потоком . В отложениях приливных дельт, направленных в сторону суши, преобладают участки с плоско-параллельной и мульдообразной крупной косой слоистостью, перемежающиеся с участками крупной косой слоистости, ориентированной в сторону отливных течений, особенно в кровле разреза. Скорости седиментации в приливных дельтах часто высокие, и эти отложения могут составлять значительную часть лагунных фаций, в особенности если они мигрируют латерально вместе с миграцией приливно-отливной протоки.[ ...]

Приливно-отливные песчаные гряды состоят из хорошо сортированного средне- и мелкозернистого песка с фрагментами раковин. Часто размер зерен в материале гряды более тонкий, чем можно было бы ожидать по силе течения, связанного с грядой (, с. 49). Песчаные гряды вокруг британских островов обычно имеют длину 50 км, ширину 1-3 км, высоту 10-50 м и располагаются на расстоянии до 12 км друг от друга. Никакой простой зависимости между размерами гряд и глубиной воды не было установлено, хотя для некоторых групп отмечаются систематические вариации длины и высоты, как, например, в грядах Норфолка на востоке Англии (рис. 9.12), размер которых уменьшается при удалении от берега . Косая ориентировка большинства гряд к направлению приливно-отливного течения означает, что транспортировка осадка к каждой из двух сторон гряды осуществлялась либо преимущественно отливным, либо преимущественно приливным течением (рис. 9.13). Неравнозначность, типичная для таких течений (см. рис. 9.35), обусловливает развитие асимметричного поперечного сечения активных балок, которое сохраняется в виде серии основных пологих (3-7°) внутренних плоскостей напластования, разделенных более мелкомасштабной косой слоистостью (рис. 9.14, б). Эта последняя отражает песчаные волны, образованные в направлении прилива и отлива, на поверхности современных активных гряд. Песчаные волны располагаются косо, но по направлению к гребню гряды становятся параллельными ему, указывая на конвергенцию направлений потока вдоль гребня. Прогрессивное изменение ориентировки песчаных волн объясняется их рефракцией, так как клиновидная форма гряды прогрессивно препятствует течению.[ ...]

Хотя приливно-отливные течения являются двунаправленными, прямолинейными или круговыми, они осуществляют преимущественно однонаправленную транспортировку осадка вследствие того, что 1) отливное и приливное течения обычно не равны по максимальной силе и продолжительности (рис. 7.39, д); 2) отливные и приливные течения могут следовать взаимоисключающими транспортными путями; 3) замедляющий эффект, связанный с круговым приливом, задерживает поступление осадка; 4) однонаправленное приливно-отливное течение может быть усиленно другими течениями, например дрейфовым ветровым течением. Взаимодействие этих процессов хорошо демонстрируется на примере наиболее изученных морей в мире, а именно морей Северо-Западной Европы, гидродинамический режим которых находится в частичном равновесии с формами поверхности дна и направлениями транспортировки осадка.[ ...]

Линейные приливно-отливные песчаные гребни (или песчаные бары) распространены в современных приливных обстановках и на прибрежных, и удаленных от берега участках (разд. 9.5.3); морфологически сходные формы морского ложа широко распространены и в Среднеатлантическом заливе с преимущественно штормовым режимом (разд. 9.6.2). В настоящее время диагностические критерии для различения в геологической летописи линейных песчаных гребней, образованных преимущественно приливно-отливными течениями или преимущественно штормовыми течениями, отсутствуют, так как еще очень плохо известны особенности внутреннего строения современных песчаных гребней.[ ...]

Сезонные и приливно-отливные течения. В зависимости от положения, формы и структуры берега объем и перемещение водных масс будут меняться один или два раза в сутки в пределах от очень больших величин до пренебрежимо малых. Сезонные течения могут дополнительно способствовать перемешиванию воды в вертикальном направлении, разрушая слои или препятствуя расслоению водных масс в зависимости от температуры и плотности воды.[ ...]

Длинная ось приливной песчаной гряды приблизительно параллельна направлению приливно-отливного течения (рис.6.7-2).[ ...]

Важнейшими особенностями фаций приливной протоки являются: наличие базальной эрозии поверхности дна с отложениями раковинного гравия со смешанным фаунистическим комплексом; наличие крупных латеральных поверхностей аккреции, наклоненных в сторону русла протоки и отражающих прежнее положение седиментаци-онного борта протоки, и крупномасштабных участков крупной (более 1 см) косой слоистости приливно-отливного течения, разделенных тонкими волнистыми слойками алеврита и глины .[ ...]

Миграция дюн(?)на ЮВ пой лиянием приливно-отливных течений, вероятно усиленных штормами.[ ...]

Своеобразные изменения происходят у рыб приливно-отливной зоны в биологии размножения. Многие из рыб, в частности; подкаменщики, на время икрометания отходят из литоральной полосы. Некоторые виды приобретают способность живорождения, как например, бельдюга, икра которой проходит инкубационный период в материнском организме. Пинагор, обычно откладывает свою икру.ниже уровня отлива, а в тех случаях, когда икра его обсыхает, поливает ее водой изо рта, плещет на нее хвостом. Наиболее любопытное приспособление к размножению в приливно-отливной зоне наблюдается у американской рыб? ки Leuresthes tenuis (Ayres), которая откладывает икру в сизигийные приливы в той части приливно-отливной зоны, которая не покрывается квадратурными приливами, так что икра развивается вне воды во влажной атмосфере. Инкубационный период длится до следующего сизигия, когда молодь выходит из икры и уходит в воду. Сходные приспособления к размножению в литорали наблюдаются и у некоторых Galaxiiformes. Приливно-отливные течения, так же как и вертикальная циркуляция, оказывают и косвенные влияния на рыб, перемешивая донные отложения и вызывая, таким образом, лучшее освоение их органического вещества, а тем самым повышение продуктивности водоема.[ ...]

[ ...]

Сезонно меняющиеся полупостоянные океанические течения, Калифорнийское и Давидсона, также оказывают сильное влияние на шельф при латеральной миграции в сторону шельфа, особенно зимой, когда придонное течение направлено к северу. Летом происходит обратное. Течения слишком слабы, чтобы эродировать морское ложе, но могут переносить взвешенный осадок и усиливать направленное к северу ветровое дрейфовое течение в течение зимы. Смешанные и полусуточные приливы высотой 2-3 м вызывают круговые приливно-отливные течения, которые усиливают другие донные течения, но сами относительно слабы. Приливно-отливные течения на среднем и наружном шельфах имеют среднюю скорость лишь 10 м/с . Однако на внутреннем шельфе средняя скорость течения может достигать 30 см/с и часто усиливается за счет волновых валов.[ ...]

Большинство критериев, широко применяемых для различения древних приливно-отливных отложений, выведены из наблюдений главным образом над современными литоральными отложениями . Многие из этих критериев неприменимы ни к сублиторальному поясу вообще, ни к шельфовой обстановке в частности. В прибрежных обстановках приливно-отливные течения обычно единственный существенный источник энергии, тогда как в удаленных от берега обстановках ветры, волны и штормы генерируют неопределенно изменчивые и, следовательно, менее предсказуемые процессы и продукты. Тем не менее некоторые сочетания седимен-тологических признаков являются индикаторными для удаленных от берега приливно-отливных отложений.[ ...]

Песчаные волны намного меньше и ориентированы нормально к направлению приливно-отливных течений. Волны имеют высоту от 1 до 10 м, они асимметричные и расстояние между ними составляет несколько сотен метров.[ ...]

[ ...]

Процессы осадконакопления подразделяются на 1) процессы спокойной погоды (включающие приливно-отливные течения, океанические течения и набегающие волны) и 2) штормовые процессы (связанные со штормами нагонные течения и колебательные волны высокой энергии). В соответствии с этим в углах треугольной диаграммы (рис. 9.33, Б) располагаются три фациальных типа, связанные с тремя группами процессов: 1) преимущественно приливно-отливных, 2) преимущественно волновых, 3) преимущественно штормовых. Эта классификация процессов связана с аналогичной классификацией современных шельфовых обстановок (рис. 9.4). Такая предварительная схема обеспечивает базу для рассмотрения упомянутых выше трех основных групп мелководных морских терригенных фаций, на основе комбинации содержания песка и ила и на преимущественных процессах осадконакопления.[ ...]

Песчаные ленты представляют собой удлиненные тела, параллельные направлению самого сильного приливно-отливного течения. Они имеют длину до 15 км, ширину 200 м и мощность не более 1 м.[ ...]

Они обычны для приливно-отливных частично замкнутых эпиконтинентальных морей и проливов. Обычно они сложены крупномасштабными разнообразными косыми слоями (мощность косослоистых серий составляет около 1-10 м, редко до 20 м). Внутренние структуры меняются от простых лавинных наклонных передовых слоев до сложных участков, состоящих из крупных, полого наклоненных поверхностей наслоения, которые разделяются участками с мелкомасштабной косой слоистостью с падением, как правило, вниз по склону, но в ряде случаев и вверх.[ ...]

Характеристики: пальцеобразные русловые пески, переходящие в направлении от берега в удлиненные песчаные гребни приливно-отливных течений.[ ...]

Относительно мощные, удлиненные песчаные тела в направлении прилива, сформированные песчаными гребнями и отмелями приливно-отливных течений, которые образуют комплекс второстепенных русел и пески с о знаками мегаряби (рис.6.6-32), представляют собой основные геометрические элементы, наблюдаемые в этом тире дельты.[ ...]

Подобстановка осадконакопления с высоким энергетическим уровнем, где осадочный материал постоянно перерабатывается приливно-отливными течениями, морскими вдольбереговыми течениями и волнами (глубина воды не более 10 м). Она включает покровные пески фронта дельты, устьевый бар дельтового рукава, приливно-отливные отложения устья реки, отложения прибрежного и берегового вала и устьевого бара потока. Фронт дельты представлен относительно крупномасштабной последовательностью, характеризующейся увеличением размера зерен вверх по разрезу. Она регистрирует изменение фаций от тонкозернистых дальних или продельтовых до фации береговой линии, где обычно преобладает песчаник. Эти последовательности являются результатом латерального наращивания фронта дельты, и могут быть срезаны последовательностями дельтового рукава или разветвленного приливно-отливного канала стока по мере продолжения наращивания.[ ...]

Физические процессы, запечатлеваемые в древних озерных отложениях, аналогичны- процессам, связанным с морскими обстановками. Однако в озерах отсутствуют приливно-отливные течения, волновая активность здесь снижена, зато характерны выходы дна выше поверхности воды, отражающие частые, даже годичные колебания уровня воды в озерах и положения их береговой линии.[ ...]

Неравномерность береговой линии разделяет шельф на большое количество участков осадко-накопления (рис. 9.22, б). Особенности береговой линии и движущая сила течения Агульяс сохраняют прибрежное положение этих участков и не позволяют распространяться далеко от береговой линии. При подветренном положении в них развиваются водовороты, движущиеся по часовой стрелке, например около Мапуту и Дурбана (рис. 9.22, б). На морском дне обращенные к северу подветренные склоны песчаных волн и знаков ряби указывают на контртечения, которые могут транспортировать осадок к обрыву шельфа. Там, где направленное к югу течение Агульяс поворачивает к шельфу, граница между южной оконечностью системы водоворота и основным течением становится зоной разгрузки участков (рис. 9.22, б), которая может мигрировать вдоль шельфа на расстояние до 10 км в любую сторону. Вследствие такой миграции эти районы могут содержать осадочные структуры, которые сходны со структурами, образующимися в других районах под влиянием системы возвратных приливно-отливных течений (разд. 9.5.2).[ ...]

В морях и океанах дело обстоит совсем иначе. Морские местообитания обширны и сообщаются между собою; они более или менее доступны для пелагических личинок, поскольку последних быстро разносит постоянными и приливно-отливными течениями. У морских беспозвоночных расселительной стадией служит обыкновенно недолговечная пелагическая личинка, а сидячая взрослая особь обычно соответствует той фазе жизненного цикла, на которой в основном осуществляется питание и рост. Все это составляет полную противоположность пресноводным насекомым (рис. 5.9).[ ...]

Вишером песчаников Навахо как мелководных морских отложений. Они приводят структурные данные для этих пород и сопоставляют косую слоистость в них с той, которая якобы наблюдается в современных донных формах, образованных приливно-отливными течениями. Однако структурные данные не могут считаться однозначными, а при сравнении косой слоистости эти авторы почему-то не приняли в расчет, что эхо-граммам, записанным над мелководными морскими донными формами, свойственна преувеличенная контрастность по вертикали .[ ...]

Условия, подходящие для регулярного отложения иловых шлейфов, существовали в раннемеловом проливе южной Англии . Илистые слои лежат в центральной части кварцевых алевритов и песков и являются диагностическими для двух периодов приливного затишья, отделенных отложениями приливно-отливного течения (стадии В, С и О на рис. 7.39). Пески передового слоя отражают миграцию песчаной волны или мегаря-би в течение стадии преобладания течений (рис.[ ...]

Биологическая продуктивность биосферы, всего живого вещества Земли составляет 1,7x1015 МДж/год. По абсолютному своему значению она сопоставима, в пределах одного порядка величин, с такими глобальными геологическими процессами, как энергия приливно-отливных течений (2,3x1015 МДж/год), энергия движения воздушных масс атмосферы (1,3x1015 МДж/год) и величина теплового потока из недр Земли, равная 1,3x1015 МДж/год; на порядок выше энергии землетрясений Земли и на два порядка выше энергии речного стока и вулканических извержений.[ ...]

Открытые шельфы (Гинзбург, Джеймс ) наклонены к кромке шельфа, находящейся на глубине 140-230 м, а так как не существует никаких физических барьеров, то на дно шельфа сильно действуют волновые процессы, активными являются также океанические и приливно-отливные течения. На таких шельфах могут обособиться обстановки с высокой энергией среды, и на них обильно представлен крупнозернистый детрит. Крупнозернистый детрит включает «чистые» калькарениты. Присутствие более тонкозернистого карбоната в основном приурочено к более глубоким (с низкой энергией) наружным краям шельфа, где становится существенной пелагическая седиментация. Отсутствие значительных уклонов дна отражается в наличии широких, неправильной формы фациальных поясов и в отсутствии переотложения за счет гравитационного течения.[ ...]

Как считает большинство исследователей, активное развитие современных каньонов было связано с периодами падения уровня океана в плейстоцене. Береговая линия в эпохи оледенений значительно приближалась к кромке шельфа, поэтому материал, выносимый реками и приливно-отливными течениями, поступал непосредственно на склон и эродировал его поверхность, в результате чего образовались промоины и каньоны. Голоценовая трансгрессия моря привела к тому, что каньоны на пассивных окраинах потеряли непосредственную связь с питавшими их источниками и постепенно утратили активность. Однако в позднем плейстоцене они представляли эффективную систему транспортных артерий, по которым большая часть осадочного материала, выносимого на шельф, в конечном итоге сбрасывалась в глубоководные районщ. окраины.[ ...]

Подводная денудация и осадконакопление активизировались после нарушения баланса наносов в лагуне из-за отвода устьев рек. Усилился размыв перемычки, отделяющей лагуну от моря и в некоторых местах ее состояние признано критическим. В проходах, связывающих лагуну с морем, течения вызывают размыв осадков по одну сторону перемычки и их накопление по другую. Из-за постройки молов возросла скорость течений. Благодаря этому происходит саморазвитие процессов углубления и расширения судоходных каналов. В некоторых местах прохода Маламокко, например, подводная денудация распостранилась до глубины 20 м. Усиление приливно-отливных течений способствовало улучшению качества воды в лагуне, но при этом активизировалась абразионная деятельность, создающая угрозу некоторым строениям. В частности, в проходе Лидо уже произошло разрушение форта Сан-Андреа.[ ...]

На шельфе и в его песчаном покрове проявляются определенные вариации действующих процессов и ответные реакции осадконакопления , связанные с географическим положением. Особенности северной банки Джорджес-Банк частично унаследованы от субстрата (они и преобладают), а частично обусловлены действием приливно-отливного течения, перерабатывающего относительно грубые плейстоценовые ледниковые осадки. На юге Северо-Атлантического шельфа преобладает эрозия, осадок не откладывается и образуются биогенные карбонаты in situ. В средней части Северо-Атлантического шельфа признаки древних речных отложений сочетаются с продуктами действия современных преимущественно волновых процессов и течений.[ ...]

Преобладающей особенностью является хорошо отсортированный песок (рис.6.7-1), с отношением зерна - матрица (grain-matrix ratio) от умеренного до высокого. Распределение размера зерен по грядам относительно однородное. Размер зерен может увеличиваться вверх по разрезу внутри гряды и в региональном масштабе в направлении транспортировки приливно-отливными течениями.[ ...]

Имеется сравнительно небольшое число примеров фаций древних ассоциаций эстуариев. Несколько разрезов плейстоцена в Голландии, интерпретируемых как отложения сублиторальных русел эстуария, представлены базальной эрозионной поверхностью, перекрывающейся маломощным внутриформационным конгломератом, который переходит в пески с мульдообразной косой слоистостью и признаками бимодальных палеотечений . Фронтальные склоны косых слоев имеют глинистые слойки и чередование глин и алевритов, это указывает на то, что миграция рельефа ложа происходила в соответствии с флуктуациями приливно-отливного течения. За русловыми песками следуют более тонкозернистые фации с линзообразной и флазерной слоистостью, они также показывают наличие бимодальных палеотечений. В данном примере интерпретация фаций как этуариевых, а не как фаций приливно-отливных проток подтверждается близким соседством их с речными фациями.[ ...]

Рассматривая общую концепцию энергетических «субсидий», надо сделать еще одно замечание. Фактор, в одних условиях увеличивающий продуктивность, в других условиях может способствовать утечке энергии, уменьшая продуктивность. Так, усиленная эвапотранспирация в сухом климате приводит к перерасходу энергии, а во влажном климате, например, дает дополнительную энергию (Г. Одум и Пиджин, 1970). Экосистемы проточных вод, такие, как включенный в табл. 7 ручей во Флориде, обычно более продуктивны, чем экосистемы стоячих вод, но слишком быстрый (и потому действующий разрушительно) или же нерегулярный поток воды снижает продуктивность. Ровная смена приливов и отливов на засоленных маршах, в заросших манграми эстуариях или на коралловых рифах способствует высокой продуктивности этих сообществ, но на северных скалистых побережьях, зимой страдающих от льда, а летом от жары, приливно-отливные течения могут отнимать энергию у сообщества. Даж;е в сельском хозяйстве попытки человека помочь природе часто приводят к нежелательным последствиям. Например, вспашка почвы на севере благотворна, но на юге она приводит к быстрому выщелачиваний) питательных веществ и потере органического вещества, что может сильно повредить будущим урожаям. Симптоматично, что агрономы сейчас серьезно обсуждают возможность ведения «беспахотного» земледелия - обнадеживающий сдвиг в сторону концепции «разума, помогающего природе, а не борющегося с ней». Наконец, и некоторые типы загрязнений, например обработанные сточные воды, могут в зависимости от объема и периодичности сброса оказаться благоприятным фактором, увеличивающим продуктивность, или служить источником стресса (см. фиг. 216). Если обработанные сточные воды попадают в экосистему с постоянной умеренной скоростью, то они могут способствовать повышению продуктивности, однако массивный их сброс через нерегулярные промежутки времени может почти полностью уничтожить систему как биологическую единицу.[ ...]

Осадконакопление в озерах зависит от трех основных факторов: химизма воды, колебания береговой линии и относительного количества обломочного материала, приносимого реками. Открытые озера характеризуются довольно устойчивой береговой линией, так как приток воды плюс выпадение атмосферных осадков находятся в них в равновесии с величиной оттока плюс испарение. Отток воды играет роль буфера, предотвращающего особенно сильные колебания уровня озера (например, в Великих озерах Северной Америки), но, несмотря на это, колебания уровня озер бывают значительными (как в озере Ньяса в Восточной Африке ). Колебания береговой линии также могут быть вызваны таким явлением, как изостатическое выгибание, которое происходит после оледенения. Так, северный берег озера Верхнее поднимается относительно южного на 0,46 м за 100 лет , а протока озера Онтарио поднимается на 0,37 м за то же время . С геологической точки зрения отрезки времени, за которые совершаются эти движения, являются мнгновенными. Другие озера (Маракайбо в Венесуэле) непосредственно соединяются с морем, что также определяет уровень воды в озере. Необычная ситуация имеет место в озере Питт в Британской Колумбии , где уровень воды контролируется приливно-отливными течениями в эстуарии реки Фрейзер. В осадконакоплении открытых озер обычно преобладает привнос обломочного материала реками, но там, где поставка его невелика (например, в озерах Танганьика - Киву, рис. 14.8), может доминировать химическая и биохимическая седиментация.