Теорема Максвелла (теорема о взаимности единичных перемещений). Потенциальная энергия деформации при изгибе. Теорема о взаимности работ и взаимности перемещений Канонические уравнения метода сил, их физический смысл

Рассмотрим два различных состояния (в порядке загружения) одной и той же упругой системы:состояния 1 при действии группы сил и состояние 2 при действий группы сил на примере балки на рис.33, а . Определим и сопоставим работу внешних сил в следующих предположениях. Сначала система постепенно загружается силами состояния 1, а затем, когда силы достигнут окончательного значения, система будет постепенно нагружаться силами состояния 2.Во втором варианте последовательность приложения сил изменяется. Сначала система нагружается силами состояния 2, а затем -силами состояния 1.Допустим, что сперва на систему начала постепенно действовать нагрузка первого состояния, а потом- второго. Суммарная работа внешних сил будет выражаться алгебраической суммой .

Рассмотрим теперь приложение нагрузки в обратной последовательности, когда сначала прикладывается нагрузка второго, а затем – первого состояния. В этом случае суммарная работа внешних сил выразится следующей алгебраической суммой: , где -работа внешних сил второго состояния на перемещениях, вызванных действием сил первого состояния.

Согласно выражению (63), суммарная работа W внешних сил равна по абсолютной величине работе А внутренних сил, взятой с обратным знаком, или потенциальной энергии деформации U .

Известно, что в линейно деформируемой системе потенциальная энергия деформации не зависит от последовательности приложения внешних сил, а зависит только от исходного и конечного состояний системы. Поскольку исходное и конечное состояния системы в обоих случаях загружения одинаковы, то и суммарные работы внешних сил будут равны, т.е. или , откуда

Полученная аналитическая зависимость выражает собой теорему о взаимности работы и формируется так: в линейно деформируемом теле возможная работа внешних или внутренних сил первого состояния на перемещениях точек их приложения, вызванных действием сил второго состояния, равна возможной работе внешних или внутренних сил второго состояния перемещениях, вызванных действием сил первого состояния. Это так называемая теорема Бетти-Рэлея.



Теорема о взаимности перемещений может быть представлена как частный случай теоремы о взаимности работ. Пусть на балку в первом состоянии действует только одна единичная сила , а во втором состоянии – тоже одна единичная сила (рис.34,а, б ). Сила приложена в точке 1, а сила – в точке 2. На основании теоремы о взаимности работ приравняем возможную работу внешних сил первого состояния на перемещениях второго состояния работе сил второго состояния на перемещениях первого состояния:

Это аналитическое выражение для теоремы взаимности перемещений, которая формулируется так: перемещение точки приложения первой единичной силы по направлению, вызванное действием второй единичной силы, равно перемещению по направлению второй единичной силы, вызванному действием первой единичной силы, это так называемая теорема Максвелла, имеющая фундаментальное значение в строительной механике.

Рисунок 34 – Определение взаимности перемещений

Литература:

Основная: 6[разр.3: с 29-31; разр.5:с 36-47].

Контрольные вопросы:

1 Для чего нужно уменьшит размеры панелей и с какой целью вводятся дополнительные двухопорные фермочки-шпренгели, а также сколько и какие категории различают в шпренгельных фермах, и как определяются усилия в элементах основной и дополнительных ферм?

2 Какими функциями выражаются деформации (перемещения)в упругих системах и как аналитически это может быть записано, а также при каких допущениях, назовите их, перемещения, и деформации рассматриваемых упругих систем подчиняются закону независимости действия сил?

3 Для чего анализируют работу внешних и внутренних сил упругого тела и какими понятиями при этом пользуются в строительной механике, а также по какой зависимости определяется работа деформации элементов сооружения при статическом приложении внешних сил, дайте определение теореме Клайперона?

4 По какой зависимости определяется работа всех внешних сил действующих на балку и через какие силы может быть выражена работа внутренних сил упругой стержневой системы?

5 По какой зависимости определяется полная работа внутренних сил и почему работа внешних и внутренних сил называется возможной?

6 Какая аналитическая зависимость выражает теорему о взаимности работы и как формулируется (теорема Бетти-Релея)?

Рассмотрим два состояния упругой системы, находящейся в равновесии. В каждом из этих состояний на систему действует некоторая статическая нагрузка (рис.4,а). Обозначим перемещения по направлениям сил F1 и F2 через, где индекс «i» показывает направление перемещения, а индекс «j» - вызвавшую его причину.

Обозначим работу нагрузки первого состояния (сила F1) на перемещениях первого состояния через А11, а работу силы F2 на вызванных ею перемещениях - А22:

Используя (1.9), работы А11 и А22 можно выразить через внутренние силовые факторы:

Рассмотрим случай статического нагружения той же системы (рис.5,а) в такой последовательности. Сначала к системе прикладывается статически возрастающая сила F1 (рис.23,б); когда процесс ее статического нарастания закончен, деформация системы и действующие в ней внутренние усилия становятся такими же, как и первом состоянии (рис.23,а). Работа силы F1 составит:

Затем на систему начинает действовать статически нарастающая сила F2 (рис.5,б). В результате этого система получает дополнительные деформации и в ней возникают дополнительные внутренние усилия, такие же, как и во втором состоянии (рис.5,а). В процессе нарастания силы F2 от нуля до ее конечного значения сила F1 , оставаясь неизменной, перемещается вниз на величину дополнительного прогиба и, следовательно, совершает дополнительную работу:

Сила F2 при этом совершает работу:

Полная работа А при последовательном нагружении системы силами F1, F2 равна:

С другой стороны, в соответствии с (1.4) полную работу можно определить в виде:

Приравнивая друг к другу выражения (1.11) и (1.12), получим:

А12=А21 (1.14)

Равенство (1.14) носит название теоремы о взаимности работ, или теоремы Бетти: работа сил первого состояния на перемещениях по их направлениям, вызванных силами второго состояния, равна работе сил второго состояния на перемещениях по их направлениям, вызванных силами первого состояния. Опуская промежуточные выкладки, выразим работу А12 через изгибающие моменты, продольные и поперечные силы, возникающие в первом и втором состояниях:

Каждое подинтегральное выражение в правой части этого равенства можно рассматривать как произведение внутреннего усилия, возникающего в сечении стержня от сил первого состояния, на деформацию элемента dz, вызванную силами второго состояния.

Лабораторная работа № 10

Цель работы – проверить опытным путем справедливость теоремы о взаимности перемещений и на ее основе построить упругую линию балки.

Основные сведения

Теорема о взаимности работ гласит, что работа первой силы на перемещении точки ее приложения под действием второй силы равна работе второй силы на перемещении точки ее приложения под действием первой силы, т.е.

F 1 у 12 = F 2 у 21 = W.(10.1)

Если силы равны, то теорема переходит в теорему о взаимности перемещений: перемещение первого сечения под действием силы, приложенной во втором сечении, равно перемещению второго сечения под действием той же силы, но приложенной в первом сечении.

у 12 = у 21 . (10.2)

Порядок выполнения и обработка результатов

Опыты проводятся на настольной установке СМ-4, представляющей собой двухопорную балку описанную в лабораторной работе № 9 .

Проверка теоремы о взаимности перемещений (рис. 10.1) выполняется следующим образом.

Рис. 10.1. Проверка теоремы о взаимности перемещений

В двух произвольных сечениях балки устанавливаются стрелочные индикаторы и гиревые подвесы (сечения 1 и 2 рис. 10.1, а). На индикаторе сечения 2 снимается начальный отсчет, балка нагружается в сечении 1 нагрузкой F и снимается отсчет индикатора, установленного в сечении 2 (см. рис. 10.1, б). Разность данного и начального отсчетов равна величине прогиба у 21 в сечении 2. Затем балка разгружается.

Данные по F и у 21 заносятся в журнал испытаний. Далее на индикаторе, установленном в сечении 1, снимается начальный отсчет, балка нагружается в сечении 2 той же нагрузкой F и по разности отсчетов индикатора 1 определяется величина прогиба у 12 (см. рис. 10.1, в).

Балка разгружается и данные по у 12 заносятся в журнал испытаний. Сопоставлением полученных данных по равенству (10.2) проверяется теорема о взаимности перемещений. Если равенство (10.2) не соблюдается, определяют процент погрешности

и делают выводы.

Используя теорему о взаимности перемещений, можно с помощью одного индикатора, закрепленного стационарно в сечении приложения нагрузки заданной расчетной схемы (рис. 10.2), определить экспериментально перемещения балки в любом сечении и построить упругую линию балки.

Рис. 10.2. Построение упругой линии балки

Индикатор линейных перемещений устанавливается в том сечении балки, в котором по расчетной схеме прикладывается заданная нагрузка. Один гиревой подвес размещается на консоли, второй – внутри пролета.

Определяются перемещения сечения, в котором установлен индикатор, при последовательном приложении заданной нагрузки F в расчетные точки 1 … 10 (см. рис. 10.2). Эта операция включает в себя установку гиревого подвеса в расчетную точку, снятие начального отсчета по индикатору, приложение заданной нагрузки F к гиревому подвесу, снятие отсчета индикатора и определение приращения отсчетов, равного определяемому перемещению. Для приложения нагрузки в сечениях, расположенных на консоли, используется второй гиревой подвес.

Согласно теореме о взаимности перемещений, эти перемещения будут равны перемещениям расчетных точек при приложении нагрузки F в сечении установки индикатора.

Полученные значения перемещений заносятся в журнал испытаний.

Для сравнения экспериментальных перемещений с теоретическими последние просчитываются для заданной

Работа первой силы на перемещении ее точки приложения, вызванном второй силой равняется работе второй силы на перемещении ее точки приложения, вызванном первой силой.

(Линейно-упругие системы всегда консервативны, если загружены консервативными силами, т.е. силами, имеющими потенциал).

В качестве модели системы выберем консольную балку. Перемещения будем обозначать - перемещение по направлению силы , вызванное силой .

Нагрузим систему вначале силой , а затем приложим силу . Работа сил, приложенных к системе запишется:

(Почему два первых члена имеют множитель , а последний нет?)

Затем первой приложим силу а второй - .

Т.к. система консервативна, а также потому, что начальные и конечные состояния в обоих случаях совпадают, то работы необходимо равны, откуда следует

Если положить , то получим частный случай теоремы Бетти – теорему о взаимности перемещений.

Перемещения, вызванные единичными силами, мы будем обозначать (смысл индексов прежний). Тогда

Потенциальная энергия деформации плоской

Стержневой системы.

Будем рассматривать плоскую систему, т.е. систему все стержни которой и все силы лежат в одной плоскости. В стержнях такой системы в общем случае могут возникать при внутренних силовых факторах:

Упругая система деформируясь накапливает при этом энергию (упругую энергию) называемую потенциальной энергией деформации .

а) Потенциальная энергия деформации при растяжении и сжатии.

Потенциальная энергия накопленная в малом элементе длиной dz будет равняться работе сил приложенных к этому элементу

Потенциальная энергия для стержня:

Замечание. и - необязательно постоянные величины.

б) Потенциальная энергия при изгибе.

Для стержня:

в) Поперечные силы вызывают сдвиги, и им соответствует по

тенциальная энергия сдвига. Однако, эта энергия в большинстве случаев невелика и мы не будем ее учитывать.

Замечание. В качестве рассматриваемых объектов у нас фигурировали прямые стержни, но полученные результаты применимы и криволинейным стержням малой кривизны, у которых радиус кривизны приблизительно в 5 раз и более превосходит высоту сечения.

Потенциальная энергия для стержневой системы может быть записана:

Здесь учтено то обстоятельство, что при растяжении и сжатии сечения не поворачиваются, следовательно, изгибающие моменты при этом работы не совершают, а при изгибе не меняется расстояние по оси между смежными сечениями и работа нормальных сил равна нулю. Т.е. потенциальную энергию изгиба и растяжения – сжатия можно вычислить независимо.


Знаки стимулирования означают, что потенциальная энергия вычисляется для всей системы.

Теорема Кастельяно.

Выражение (3) показывает, что потенциальная энергия деформации является однородной квадратичной функцией и , а те в свою очередь линейно зависят от сил, действующих на систему таким образом является квадратичной функцией сил.

Теорема. Частная производная от потенциальной энергии по силе равняется перемещению точки приложения этой силы по направлению последней.

Доказательство:

Пусть - потенциальная энергия, соответствующая силам системы Рассмотрим два случая.

1) Вначале приложены все силы а затем одна из них получает малое приращение тогда полная потенциальная энергия равна:

2) Вначале приложена сила а затем прикладываются силы В этом случае потенциальная энергия равна:

Т.к. начальное и конечное состояние в обоих случаях одинаково, а система консервативна, то потенциальные энергии надо приравнять

Отбрасывая малые второго порядка, получаем

Интеграл Мора.

Теорема Кастельяно дала нам возможность определять перемещения. Эту теорему используют для отыскания перемещений в пластинках, оболочках. Однако, вычисление потенциальной энергии громоздкая процедура и мы сейчас наметим более простой и наиболее общий путь определения перемещений в стержневых системах.

Пусть задана произвольная стержневая система и нам нужно определить в ней перемещение точки по направлению , вызванное всеми силами системы -

Формулировка теоремы о взаимности работ (теоремы Бетти) , доказанная в 1872 г Э. Бетти: возможная работа сил первого состояния на соответствующих перемещениях, вызванных силами второго состояния, равна возможной работе сил второго состояния на соответствующих перемещениях, вызванных силами первого состояния.

24. Теорема о взаимности перемещений (Максвелла)

Пусть и.Теорема о взаимности перемещений с учетом принятого обозначения перемещения от единичной силы имеет вид: .Теорема о взаимности перемещений была доказана Максвеллом.Формулировка теоремы о взаимности перемещений : перемещение точки приложения первой единичной силы, вызванное действием второй силы, равно перемещению точки приложения второй единичной силы, вызванному действием первой единичной силы

25. теорема Релея о взаимноти реакций.

26. теорема Гвоздева о взаимности перемещений и реакций.

27. Определение перемещений от нагрузки. Формула Мора.

Формула мора


28. Определение перемещений от температурного воздействия и от смещения.

Температурное воздействие.


Осадка


29. Правило Верещагина. Формула перемножения трапеций, формула Симпсона.

Формула умножения трапеций.

Формула умножения криволинейных трапеций

31. Свойства статически неопределимых систем.

    Для определения усилий и реакций уравнений статики недостаточно, надо привлекать уравнения неразрывности деформации и перемещений.

    Усилия и реакции зависят от соотношения жесткостей отдельных элементов.

    Изменение температуры и осадка опоры вызывают появление внутренних усилий.

    При отсутствии нагрузки возможно состояние самонапряжения.

32. Определение степени статической неопределимости, принципы выбора основной системы метода сил.

Для статически неопределимых систем W<0

Число лишних связей определяется по формуле:

Л = - W + 3К ,

где W– число независимых геометрических параметров, определяющих положение конструкции на плоскости без учета деформации конструкции (число степеней свободы), К – число замкнутых контуров (контуры, в которых нет шарнира).

W = 3Д – 2Ш – Со

формула Чебышева для определения степени свободы, где Д – число дисков, Ш – число шарниров, Со – число опорных стержней.

    ОСМС должна быть геометрически неизменяемой.

    Должна быть статически определима (удаляем Л лишних связей).

    Эта система должна быть простой для расчета.

    Если исходная система была симметричной, то и ОСМС по возможности выбирают симметричной.

33. Канонические уравнения метода сил, их физический смысл.

Канонические уравнения:

Физический смысл:

Суммарное перемещение по направлению каждой удаленной связи должно быть = 0

34. Вычисление коэффициентов канонических уравнений, их физический смысл, проверка правильности найденных коэффициентов.

Перемещение по направлению итой удаленной связи, вызванной джитой единичной силой.

Перемещение по направлению итой удаленной связи, вызванной внешней нагрузкой.

Для того, чтобы проверить правильность найденных коэффициентов, нужно подставить их в систему канонических уравнений и найти Х1 и Х2.