Уравнение реакции бета распада. Радиоактивные превращения. Альфа- и бета-распад. Проникающая способность бета-частиц

Накопители тяжелых ионов открывают принципиально новые возможности в исследовании свойств экзотических ядер. В частности, они позволяют накапливать и в течение длительного времени использовать полностью ионизованные атомы – «голые» ядра. В результате становится возможным исследовать свойства атомных ядер, у которых нет электронного окружения и в которых отсутствует кулоновское воздействие внешней электронной оболочкис атомным ядром.

Рис. 3.2 Схема e-захвата в изотопе (слева) и полностью ионизованных атомах и (справа)

Распад на связанное состояние атома был впервые обнаружен в 1992 г. Наблюдался β - -распад полностью ионизованного атома на связанные атомные состояния . Ядро 163 Dy на N-Z диаграмме атомных ядер помечено черным цветом. Это означает, что оно является стабильным ядром. Действительно, входя в состав нейтрального атома, ядро 163 Dy стабильно. Его основное состояние (5/2 +) может заселятся в результате e-захвата из основного состояния (7/2 +) ядра 163 Ho. Ядро 163 Ho, окруженное электронной оболочкой,β - -радиоактивно и его период полураспада составляет ~10 4 лет. Однако это справедливо только если рассматривать ядро в окружении электронной оболочки. Для полностью ионизированных атомов картина принципиально другая. Теперь основное состояние ядра 163 Dy оказывается по энергии выше основного состояния ядра 163 Ho и открывается возможность для распада 163 Dy (рис. 3.2)

→ + e - + e . (3.8)

Образующийся в результате распада электрон может быть захвачен на вакантную К или L-оболочку иона . В результате распад (3.8) имеет вид

→ + e - + e (в связанном состоянии).

Энергии β-распадов на K и L-оболочки равны соответственно (50.3±1) кэВ и (1.7±1) кэВ. Для наблюдения распада на связанные состояния K- и L-оболочки в накопительном кольце ESR в GSI было накоплено 10 8 полностью ионизированных ядер . В течение времени накопления в результате β + -распада образовывались ядра (рис. 3.3).


Рис. 3.3. Динамика накопления ионов: а - ток накопленных в накопительном кольце ESR ионов Dy 66+ во время разных стадий эксперимента, β- интенсивности ионов Dy 66+ и Ho 67+ , измеренные внешним и внутренним позиционно-чувствительными детекторами соответственно

Так как ионы Ho 66+ имеют практически то же отношение M/q, что и ионы первичного пучка Dy 66+ , они накапливаются на одной и той же орбите. Время накопления составляло ~ 30 мин. Для того, чтобы измерить период полураспада ядра Dy 66+ , накопленный на орбите пучок было необходимо очистить от примеси ионов Ho 66+ . Для очистки пучка от ионов в камеру инжектировалась аргоновая газовая струя плотностью 6·10 12 атом/см 2 , диаметром 3 мм, которая пересекала накопленный пучок ионов в вертикальном направлении. За счет того, что ионыHo 66+ захватывали электроны, они выбывали с равновесной орбиты. Очистка пучка проходила в течение приблизительно 500 с. После чего газовая струя перекрывалась и в кольце продолжали циркулировать ионы Dy 66+ и вновь образовавшиеся (после выключения газовой струи) в результате распада ионы Ho 66+ . Продолжительность этого этапа менялась от 10 до 85 мин. Детектирование и идентификация Ho 66+ базировались на том, что Ho 66+ можно еще сильнее ионизировать. Для этого на последнем этапе в накопительное кольцо снова инжектировалась газовая струя. Происходило обдирание последнего электрона с иона 163 Ho 66+ и в результате получался ион 163 Ho 67+ . Рядом с газовой струей располагался позиционно-чувствительный детектор, которым регистрировались выбывающие из пучка ионы 163 Ho 67+ . На рис. 3.4 показана зависимость числа образующихся в результате β-распада ядер 163 Ho от времени накопления. На вставке показано пространственное разрешение позиционно-чувствительного детектора.
Таким образом, накопление в пучке 163 Dy ядер 163 Ho явилось доказательством возможности распада

→ + e - + e (в связанном состоянии).


Рис. 3.4. Отношение дочерних ионов 163 Ho 66+ к первичным 163 Dy 66+ в зависимости от времени накопления. На врезке пик 163 Ho 67+ , зарегистрированный внутренним детектором

Варьируя интервал времени между очисткой пучка от примеси Ho 66+ и временем регистрации вновь образующихся в пучке примеси ионов Ho 66+ , можно измерить период полураспада полностью ионизированного изотопа Dy 66+ . Оно оказалось равным ~0.1 года.
Аналогичный распад был обнаружен и для 187 Re 75+ . Полученный результат крайне важен для астрофизики. Дело в том, что нейтральные атомы 187 Re имеют период полураспада 4·10 10 лет и используются как радиоактивные часы. Период полураспада 187 Re 75+ составляет всего 33±2 года. Поэтому в астрофизические измерения необходимо вносить соответствующие поправки, т.к. в звездах 187 Re чаще всего находится в ионизированном состоянии.
Изучение свойств полностью ионизованных атомов открывает новое направление исследований экзотических свойств ядер, лишенных кулоновского воздействия внешней электронной оболочки.

Стабильные атомные ядра изобаров имеют минимальную величину энергии, которая определяется его массой (см. рис. 2.2.1). Масса ядра с данным общим числом нуклонов определяется, в свою очередь, его протонно-нейтронным составом, поскольку массы протона и нейтрона не равны между собой. В этой связи, среди ядер изобаров должны существовать ядра с определенное соотношением между числом протонов и нейтронов (дорожка стабильности на рис. 1.1.2), которому отвечают ядра с наименьшей массой, а, следовательно, и полной энергией. Ядру изобара с любой другой конфигурацией нуклонного состава энергетически выгодно превращение в ядро с оптимальным соотношением между числом протонов и нейтронов. Выход на дорожку стабильности в принципе возможен, если ядро испускает избыточный протон или нейтрон. Но для отделения избыточного нуклона требуется энергия не меньше энергии связи нуклона в ядре, т.е. энергия материнского ядра должна быть больше энергии дочернего ядра и свободного нуклона на величину энергии связи нуклона в материнском ядре. Если же эта энергия меньше энергии связи избыточного нейтрона в ядре, то могут иметь место самопроизвольные изменения в составе ядер, обусловленные явлением b-распада – взаимопревращением внутри ядра нуклонов одного рода в другой (протона в нейтрон или наоборот). Направление процесса для ядра изобара определяется лишь тем, при каком соотношении между числом протонов и нейтронов ядро имеет наибольшую энергию связи, которой соответствует наименьшая масса ядра (см. рис. 2.2.1).

Бета-распад (b-распад) является спонтанным процессом преобразования ядра, в результате которого ядро изменяет свой заряд на ΔΖ = ±1, сохраняя при этом неименное число нуклонов А (массовое число). В некоторых случаях образуются свободные b-частицы (электрон β - или позитрон β + ) или происходит «захват» ядром электрона из электронной оболочки собственного атома. Свойства электрона и позитрона тождественны, за исключением знака электрического заряда. Потоки образующихся b- частиц образуют b-излучение .

β-Распад – самый распространенный вид радиоактивных превращений ядер в природе. В отличие от α-распада, который наблюдается исключительно у тяжелых ядер, β-распаду подвержены ядра практически во всей области значений массового числа А, начиная от единицы (свободный нейтрон) и заканчивая массовыми числами самых тяжелых ядер.

Энергия, выделяющаяся при β-распаде, опять же, в отличие от α-распада, лежит в довольно широком интервале значений от 0,02 МэВ прираспаде ядра трития 3 Н до 16,4 МэВ при распаде ядра 12 N.

Периоды полураспада β-активных ядер изменяются в очень широких пределах от 10 -2 с до 10 18 лет .


Известны три разновидности b-распада.

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

в-распадом называется самопроизвольное превращение радиоактивного ядра в ядро-изобар или. В этом процессе один из нейтронов ядра превращается в протон или один из протонов - в нейтрон. Таким образом, в-распад является не внутриядерным, а внутринуклонным процессом. Ответственным за в-распад является слабое взаимодействие нуклонов в ядре (см. рис. 1).

Существует три вида в-распада: электронный (в--распад), позитронный (в+-распад) и электронный захват.

Электронный в-распад (в--распад). В этом случае материнское ядро испускает электрон, поэтому зарядовое число дочернего ядра увеличивается на единицу. Электронный в- распад протекает по схеме

При этом распаде наряду с дочерним ядром образуется электрон и электронное антинейтрино. Здесь мы приписали электрону зарядовое число Z=-1 и массовое число А=0, чтобы подчеркнуть сохранение электрического заряда и числа нуклонов в процессе распада.

Примером электронного в-распада может служить превращение углерода в азот:

Из приведенной схемы распада видно, что массовые числа обоих ядер одинаковы, а зарядовое число дочернего ядра на единицу больше, чем у материнского.

В основе электронного в-распада, как уже отмечалось, лежит превращение в ядре нейтрона в протон:

Поэтому можно определить в -распад как процесс самопроизвольного превращения нейтрона в протон внутриатомного ядра.

Дочернее ядро, образующееся при в-распаде, может находиться в возбужденном состоянии. При переходе ядра в основное состояние испускается у-излучение, поэтому в-распад, так же как и б-распад, может сопровождаться испусканием г-квантов.

Рис.4.Энергетический спектр электронов при в--распаде

Как показывают экспериментальные исследования, электроны, образующиеся при в--распаде, имеют широкий энергетический спектр от нуля до максимального значения Еmах (рис. 4). Величина dN, определяет число электронов, энергия которых заключена в интервале от Е до E + dE. Площадь под кривой (см. рис. 4) численно равна полному числу электронов, испускаемых радиоактивным препаратом в единицу времени. Энергия Еmах определяется разностью значений массы материнского ядра и массы продуктов распада -- электрона и дочернего ядра (см. выражение (1))

Первоначально, до открытия нейтрино, казалось, что в--распад протекает с нарушением закона сохранения энергии. Действительно, если бы материнское ядро распадалось только на дочернее ядро и электрон, то энергия электрона, согласно (1), не могла быть меньше Еmах. Для того чтобы объяснить "исчезновение" энергии (?Е = Еmах -Е), В. Паули в 1932 г. выдвинул гипотезу, согласно которой при в--распаде испускается еще одна частица, которая и уносит энергию?Е. Так как эта частица никак себя не проявляла, то следовало предположить, что она электронейтральна и обладает очень малой массой. Эта частица, названная Э. Ферми нейтрино, что дословно означает "маленький нейтрон", была экспериментально обнаружена лишь в 1956 г. За проведение экспериментальных исследований по обнаружению нейтрино Ф. Райнес и К. Коуэн в 1995 г. были удостоены Нобелевской премии по физике.

Установлено, что существует несколько типов нейтрино: электронное ve, мюонное vм, тау-лептонное vф и их античастицы.

Тип нейтрино определяется заряженной частицей, вместе с которой нейтрино рождается и с которой взаимодействует. в--распад сопровождается испусканием электронного антинейтрино ve. Именно эта частица и приведена в записанных выше схемах распада. Вопрос о массе нейтрино рассмотрен в (рис.1.).

Позитронный в-распад (в+-распад). В случае позитронного в-распада ядро испускает позитрон, в результате чего его зарядовое число Z уменьшается на единицу. Позитронный в-распад осуществляется по схеме

В качестве примера приведем превращение азота в углерод

Позитронный в-распад сопровождается испусканием позитрона е+ и нейтрино ve, т. е. тех частиц, которые представляют собой античастицы по отношению к частицам, испускаемым при электронном в-распаде (е -- и ve).

В основе в+-распада, как уже отмечалось, лежит превращение в ядре протона в нейтрон:

Поскольку масса протона меньше массы нейтрона, то для свободного протона такой процесс невозможен по энергетическим соображениям (см. выражение (1)). Однако протон, находящийся в ядре, может получать необходимую энергию от других нуклонов ядра.

Электронный захват. Третий вид в-распада -- электронный захват -- представляет собой поглощение ядром одного из электронов электронной оболочки своего атома. Чаще всего поглощается электрон из K-оболочки, поэтому электронный захват называют еще К-захватом. Реже поглощаются электроны из L- или М-оболочек.

В результате К-захвата происходит превращение одного из протонов ядра в нейтрон, сопровождающееся испусканием нейтрино:

Схема К-захвата имеет следующий вид:

На освободившееся в результате К-захвата место в электронной оболочке атома могут переходить электроны из вышележащих слоев, в результате чего возникает рентгеновское излучение. При исследовании этого излучения был открыт К-захват американским физиком Л.Альваресом в 1937 г.

Примером электронного захвата может служить превращение калия в аргон

Подводя итог описанию б- и в-распадов, следует отметить, что б-распад наблюдается только у тяжелых ядер и некоторых ядер редкоземельных элементов. Напротив, в-активные ядра более многочисленны. Практически для каждого атомного номера Z существуют нестабильные изотопы, обладающие в±-активностью.

Энергия, выделяющаяся при в-распаде, лежит в пределах от 0,0186 МэВдо 16 МэВ. Период полураспада в-активных ядер меняется от 10-2с (для) до 4*1012 лет (для).

Спонтанное деление тяжелых ядер.

Самопроизвольное деление тяжелых ядер было впервые обнаружено советскими физиками Г.Н. Флеровым и К.А. Петржаком в 1940 г. у ядер урана. Оно осуществляется по схеме т. е. ядро урана распадается на ядра ксенона и стронция с испусканием трех нейтронов.

Спонтанное деление, так же как и б-распад, происходит за счет туннельного эффекта. Пользуясь капельной моделью ядра, т. е. считая, что ядро подобно капле жидкости, можно выделить стадии, которые проходит ядро в процессе деления (рис. 5, а). Соответствующий вид потенциальной энергии ядра U для различных деформаций ядра представлен на рис. 5,б.

Рис. 5. Спонтанное деление тяжелого ядра: а -- схема деления; б -- потенциальный барьер деления

Как и при всяком туннельном эффекте, вероятность спонтанного деления очень сильно (по экспоненциальному закону) зависит от высоты барьера деления?U. Для изотопов урана и соседних с ним элементов высота барьера деления составляет?U ? 6 МэВ.

Спонтанное деление является основным каналом распада сверхтяжелых ядер. Осколки деления ядер урана U и плутония Рu асимметричны по массе. С ростом массового числа распадающегося ядра осколки деления становятся более симметричными.

Бета-распад (b-распад) является спонтанным процессом преобразования ядра, в результате которого ядро изменяет свой заряд на ΔΖ = ±1, сохраняя при этом неименное число нуклонов А (массовое число). В некоторых случаях образуются свободные b-частицы (электрон β - или позитрон β + ) или перестает существовать один из электронов («захват» ядром электрона из электронной оболочки) соответствующего атома. Свойства электрона и позитрона тождественны, за исключением знака электрического заряда. Потоки образующихся b- частиц называются b-излучением .

β-Распад – самый распространенный вид радиоактивных превращений ядер в природе. В отличие от α-распада, который наблюдается исключительно у тяжелых ядер, β-распаду подвержены ядра практически во всей области значений массового числа А, начиная от единицы (свободный нейтрон) и заканчивая массовыми числами самых тяжелых ядер.

Энергия, выделяющаяся при β-распаде, опять же, в отличие от α-распада, лежит в довольно широком интервале значений от 0,02 МэВ при распаде ядра трития 3 Н до 16,4 МэВ при распаде ядра 12 N.

Периоды полураспада β-активных ядер изменяются в очень широких пределах от 10 -2 с до 10 18 лет .

Стабильные атомные ядра должны иметь минимальную величину полной энергии, которая определяется его массой. Масса ядра с данным числом нуклонов определяется, в свою очередь, его протонно-нейтронным составом, поскольку массы протона и нейтрона не равны между собой. В этой связи у ядер-изобар существует единственно возможная конфигурация чисел протонов и нейтронов, которой отвечает ядро с наименьшей массой (см. рис. 2.2.1), а, следовательно, и полной энергией. Ядру с любой другой конфигурацией нуклонов энергетически выгодно превращение в ядро с оптимальной конфигурацией. Такие самопроизвольные изменения в составе ядер действительно имеют место и обусловлены явлением b-распада – взаимопревращением нуклонов друг в друга. Направление процесса для ядра с данным протонно-нейтронным составом определяется лишь тем, в каком состоянии один из нуклонов ядра – нейтроном или протонном – имеет наибольшую энергию связи, которой соответствует наименьшая масса ядра (см. рис. 2.2.1).

Известны три разновидности b-распада.

1. Электронный (β - - распад):

2. Позитронный (b + - распад)

3. E-захват (или К -захват - по обозначению электронной оболочки)

Е-захват и b + - распад часто конкурируют между собой, так как ядра претерпевают одинаковые превращения.

Таким образом, при b- распаде любого вида число нуклонов в ядре сохраняется, но происходит самопроизвольное превращение либо нейтрона в протон (β - - распад), либо протона в нейтрон (b + -распад и Е-захват). Именно поэтому Е-захват относится к процессам b-распада.

Так как при b- распаде изменяется только один из нуклонов ядра, то этот процесс – внутринуклонный, а не внутриядерный. Подтверждением этому служит b- распад свободного нейтрона, протекающего по следующей схеме:

. (3.5.6)

Поэтому свободный нейтрон частица нестабильная. Современное значение периода полураспада нейтрона составляет 10,25 мин.

Превращение (b-распад) свободного протона в нейтрон запрещено законом сохранения энергии, так как его масса на 1,3 МэВ меньше массы нейтрона. Но в составе ядра он может преобразовываться в нейтрон за счет внутренней энергии ядра, что приводит к явлению b + -распада или Е-захвата.

Остановимся на интересном вопросе о возникновении свободных β-частиц в процессе β-распада ядер. Не вызывает сомнений, что источником β-частиц является ядро, но большое количество экспериментальных данных свидетельствует о том, что в ядре нет β-частиц. Еще до открытия нейтрона (1932 г.) и создания протонно-нейтронной модели ядра (Иваненко, Гейзенберг.1932 г.) была предложена модель атомного ядра, имеющего в своем составе протоны и электроны. Например, ядро представлялось как 14 протонов и 7 электронов. К тому времени было известно, что протон и электрон имеют полуцелый спин, равный 1/2 и согласно этой модели спин ядрадолжен быть полуцелым числом. Однако экспериментально измеренный спин ядра равнялся единице. Это противоречие получило название «азотная катастрофа». Отсюда следует несправедливость протонно-электронной модели ядра. Об этом же свидетельствует и порядок величины магнитных моментов ядер, которые не превышают нескольких ядерных магнетонов Бора (см. §1.6 п.2). Если бы электроны входили в состав ядра, естественно было бы ожидать, что магнитные моменты ядер по порядку величины должны быть близки атомному магнетону Бора, величина которого ~ в 2000 раз больше ядерного. Наконец, о невозможности существования в ядре связанных электронов свидетельствует квантовомеханическое соотношение между неопределенностями Δp и Δr одновременного измерения импульса и координаты электрона в ядре:

которой соответствует энергии электрона > 20 МэВ . Такая величина энергии существенно превышает как высоту кулоновского барьера для электронов в самых тяжелых ядрах (В к ≈ 15 МэВ ), так и энергию электронов β-распада. Таким образом, по современным представлениям электронов в ядрах нет и они рождаются непосредственно при b-распаде ядра, о чем свидетельствует также рождение особых частиц: нейтрино (ν) и антинейтрино, которые имеют обобщающее название нейтрино.

Обнаружить на опыте β - и b + -распады очень просто, регистрируя обычными методами β-частицы с большой энергией. Зарегистрировать нейтрино, возникающее при Е-захвате, обычными лабораторными методами невозможно. Однако Е-захват сопровождается характеристическим рентгеновским излучением, возникающим вследствие того, что образовавшаяся энергетическая вакансия после захвата электрона ядром, заполняется электронами с вышележащих электронных оболочек атома. Длина волны характеристического рентгеновского излучения определяется величиной Z ядра (закон Мозли), что позволяет идентифицировать заряд материнского ядра. Кроме этого, энергия перехода может быть непосредственно передана одному из электронов внешней оболочки, в результате чего возникает излучение моноэнергетических электронов (т.н. электроны Оже ). Именно по таким сопутствующим явлениям был открыт Е-захват (Альварец, 1937 г.).

При β-распаде выделяется энергия, равная разности массы первоначальной системы и массы конечной, выраженных в энергетических единицах:

= M (A,Z) - M (A,Z+1) - m β > 0, = M (A,Z) - M (A,Z-1) - m β > 0, Е Е = M (A,Z) + m e - M (A,Z-1) - ε е > 0, (3.5.9)

где m e и ε е – масса и энергия связи атомного электрона, который захватывается ядром. В правых частях (3.5.9) опущены массы покоя нейтрино и антинейтрино, так как по современным представлениям их массы покоя m ν не превышает 30 эВ (m ν << m e).

Если к правой части равенств (3.5.9) прибавить и вычесть Z m e , то с точностью до энергии связи электронов в атоме энергию соответствующей разновидности β-распада можно выразить через массы атомов:

= M ат (A,Z) - M ат (A,Z+1) > 0, = M ат (A,Z) - M ат (A,Z-1) - 2m e > 0, Е Е =M ат (A,Z) - M ат (A,Z-1) - ε е > 0. (3.5.10)

Положительная величина энергии распада является необходимым энергетическим условием возможности β-распада. Поэтому (3.5.9) и (3.5.10) выражают энергетические условия соответствующих разновидностей β-распада. Использовать для этих целей понятие энергии связи β-частцы в ядре неправомерно, поскольку в ядре нет β-частиц.

Выше было указано, что b + - распад и Е-захват конкурируют между собой. Из (3.5.10) очевидно, что если выполняется условие для β + ‑распада, то и подавно выполнится последнее, а Е-захват может происходить даже тогда, когда β + ‑распад энергетически невозможен. Все нечетно-нечетные ядра, за исключением четырех легких ядер 2 H, 6 Li, 10 B и 14 N, указанных выше, нестабильны к β-распаду и очень часто испытывают все три вида b- распада, хотя и с различной вероятностью. Объясняется это эффектом спаривания одноименных нуклонов, в результате которого нечетно-нечетное ядро «стремится» стать четно-четным всеми возможными способами (рис. 2.2.1,б). Например, ядра в 40 % испытывает β - ‑распад, в 40 % - Е‑захват и в 20 % - b + - распад. Как всегда, эти данные следует понимать в статистическом смысле, а каждое конкретное ядро может либо испытать β - ‑распад, либо Е‑захват, либо b + - распад.

Оценим максимальную долю энергии, которую может получить невозбужденное дочернее ядро, когда энергия нейтрино равна нулю. В этом случае кинетическая энергия β-частица (T β) max и дочернего ядра Т я имеют максимально возможные значения. Пусть материнское ядро покоиться. Тогда из закона сохранения импульса следует, что

Поэтому с хорошей точностью можно положить = Е β .

Энергии β-частиц измеряется по величине их отклонения при движении в постоянном магнитном поле с помощью специальных приборов, называемых магнитными β-спектрометрами . Последний представляет магнитный анализатор импульсов β-частиц и подобен масс-спектрометру. Измерения показали, что в процессе β-распада одинаковых ядер испускаются β-частицы всех энергий от нуля и до энергии (T e) max , называемой верхней границей β-спектра , и приблизительно равной Е β из (3.5.10). Таким образом, в отличие от линейчатых спектров α-частиц (см. рис. 3.4.1), энергетический спектр β-частиц является сплошным. На рис. 3.5.1. представлен энергетический спектр β - -частиц, испускаемых при распаде свободного нейтрона (3.5.6), форма которого является весьма типичной. Энергетические спектры легких ядер более симметричны и для них средняя энергия испускаемых β-частиц примерно равна (1/2)·(T e) max . У тяжелых ядер средняя энергия β-частиц обычно близка к 1/3 максимальной и для большинства естественных источников β-излучения заключена в пределах 0,25 ÷ 0,45 МэВ .

Интерпретация перечисленных особенностей энергетических спектров β-частиц в свое время вызывала большие затруднения. Действительно, если не делать никаких предположений, то согласно (3.5.10) испускаемые β-частицы должны иметь, как и α-частицы, строго определенную и равную (T β) max энергию, определяемую энергетическим выходом распада. Но в спектре имеются b- частицы с любой меньшей энергией и неизбежно возникает вопрос - куда исчезает остальная энергия в каждом случае b-распада, когда Т β < (T e) max ? Эти соображения послужили основанием для гипотезы (Паули, 1931 г.) о возникновении в β-распадных процессах электрически нейтральной частицы с массой покоя, близкой к нулю, и со спином, равным 1/2. Эта частица, впоследствии названная нейтрино, и должна уносить большую часть (~ (2/3)·(T e) max) энергии распада. Помимо закона сохранения энергии, существует еще один важный аргумент, с необходимостью приводящий к гипотезе нейтрино – закон сохранения спина. Рассмотрим распад (3.5.6) свободного нейтрона. Нейтрон, имеющий спин 1/2, распадаясь только на протон (спин 1/2) и электрон (спин 1/2) давал бы суммарный спин продуктов, равный 0 или 1, что противоречит закону сохранения импульса, для выполнения которого нужно предположить рождение частицы с полуцелым спином. Учет орбитальных моментов протона и электрона ничего не меняет, так как они всегда целые числа.

Таким образом, при β-распаде, в отличие от α-распада, из ядра вылетают не одна, а две частицы. В силу статистического характера явления радиоактивности в каждом акте β-распада распределение энергии распада между β-частицей и нейтрино может быть любым, т.е. кинетическая энергия электрона может иметь любое значение от нуля и до (T β) max . Для очень большого числа распадов получается уже не случайное, а вполне закономерное распределение β-частиц по энергиям, называемое β-спектром .

Нейтрино практически не взаимодействуют с веществом и его длина свободного пробега (расстояние до первого взаимодействия) в твердом веществе равна примерно 10 16 км , что делает чрезвычайно сложным их регистрацию. Поэтому измерять энергию нейтрино и наблюдать их распределение по энергии практически невозможно и фактически единственно доступным для регистрации остается только β-спектр. Долгое время сведения, подтверждающие существование нейтрино, носили косвенный характер и были впервые получены в 1942 г (Аллен) путем измерения энергии отдачи дочерних ядер при Е-захвате. Прямое наблюдение нейтрино удалось осуществить только в 1953 г. (Рейнес и Коуэн) после создания мощных ядерных реакторов, работа которых сопровождается выделением больших потоков нейтрино.

Образование дочернего ядра в результате β-распада в основном энергетическом состоянии является скорее исключением, чем правилом. Обычно β-распад довольно свободно идет как на основной, так и на сравнительно сильно (по сравнению с α-распадом) возбужденные уровни и может наблюдаться несколько возбужденных уровней дочернего ядра. Возбужденные дочерние ядра переходят а основные состояние, испуская γ-кванты. Поэтому β-распад сопровождается почти всегда γ-излучением, которое представляет основную опасность при обращении с радиоактивными веществами.

Возбуждение дочернего ядра до энергии происходит за счет энергии распада Е β и в этом случае максимальная энергия β-спектра

. (3.5.13)

Если при β-распаде возможно образование дочернего ядра в нескольких возбужденных состояниях, то полный β-спектр представляет собой наложение нескольких β-спектров со своими граничными энергиями и может иметь сложную форму. Каждая составляющая спектра характеризуется своим выходом, т.е. долей распадов, приводящих к ее образованию.

Так же как и a- распад (рис. 3.4.1), b-распад удобно представлять с помощью диаграммы. На рис. 3.5.2 приведена диаграмма β + - распада ядра 14 О, в результате которого дочернее ядро 14 N рождается в возбужденном состоянии. При переходе в основное состояние дочернее ядро испускает g-квант с энергией 2,31 МэВ .

Вероятность b- распада определяется т.н. правилами отбора по четности и спину. Они заключаются в следующем. 1) Если четности материнского Р м и дочернего Р д ядер совпадают, т.е., если Р м ·Р д = +1, то такие b-переходы имеют наибольшую вероятность (разрешены на языке квантовой механики). 2) Полный момент импульса, уносимый обеими частицами при b- распаде, равен

L = s β + s ν + l β + l ν , (3.5.14)

где s и l – спин и орбитальный момент соответствующих частиц. Испускание b-частицы и нейтрино с l > 0 крайне маловероятно (запрещено на языке квантовой механики), и разрешенными являются переходы с l = 0.

Таким образом, разрешенными являются b-переходы, для которых Р м ·Р д = +1 и l = 0. Для разрешенных переходов изменение спина ядра будет определяться только ориентацией спинов, вылетающих частиц. При этом имеются две возможности.

а) β-Частица и нейтрино испускаются с противоположно направленными спинами, так что полный момент, уносимый обеими частицами, равен нулю (ориентация спина нуклона, испытывающего β-распад, сохраняется) и спин ядра не изменяется, т.е. ΔI = 0. Такие переходы называются фермиевскими , а соответствующие правила отбора

Называются правилами отбора Ферми .

б) β-Частица и нейтрино испускаются с одинаково направленными спинами, так что полный момент, уносимый обеими частицами равен единице (ориентация спина нуклона изменяется на обратную). Возможные изменения спина ядра составят ΔI = 0, ±1. Если исключить 0 – 0 переходы, в которых спин ядра равен нулю, как в начальном, так и в конечном состоянии, то получим правила отбора Гамова-Теллера

Еще раз отметим, что для 0 - 0 переходов гамов-теллеровские переходы строго запрещены , т.е. не могут быть выполнены ни при каких условиях.

Поэтому вероятность непосредственно b- распада и образования дочернего ядра в том или ином энергетическом состоянии очень сильно зависитот четности и разностиспинов исходного и конечного состояний ядер. Это положение отчетливо видно на диаграмме (рис. 3.5.2) распада ядра 14 О, где указано, что вероятность оказаться дочернему ядру в основном состоянии с характеристикой 1 + имеет ничтожную вероятность.

Энергия возбуждения дочерних ядер определяется системой энергетических уровней ядер и лежит обычно в интервале 0,1 ÷ 3 МэВ . В этих случаях переход возбужденного дочернего ядра в основные состояния происходит обычным порядком. Однако в редких случаях энергия возбуждения дочерних ядер может достигать 8 ÷ 11 МэВ , превышая энергию связи (отделения) нуклона:

. (3.5.17)

В этом случае возбужденное дочернее ядро освобождается от избыточной энергии, практически мгновенно испуская нуклон – протон или нейтрон, в зависимости от того для какого из нуклонов выполняется условие (3.5.17). Эти нуклоны получили название запаздывающих , поскольку они появляются в результате возникновения сильно возбужденных состояний дочернего ядра только после β-распада материнского ядра-предшественника .

Рассмотрим подробнее процесс испускания запаздывающих нейтронов осколками деления (см. §5.2), которые используются для управления цепной реакцией деления (см. §5.3). Время появления запаздывающих нейтронов деления, в отличие от мгновенных (см. §5.2), определяется периодами полураспада ядер предшественников. На рис. 3.5.3 изображена схема образования запаздывающих нейтронов при распаде ядра 87 Br, образующегося при делении 235 U. Примерно в двух случаях из ста β - -распадов ядра 87 Br дочернее ядро 87 Кr возникает в сильно возбужденном состоянии с энергией возбуждения = 5,8 МэВ . Энергия связи последнего нейтрона в ядре 87 Кr составляет ε n = 5,53 МэВ , которая меньше энергии возбуждения и потому испускается нейтрон с кинетической энергией 0,27 МэВ и образуется стабильное ядро 86 Кr. Можно указать две причины такой малой величины энергии связи последнего нейтрона: ядра осколков деления пересыщены нейтронами (лежат ниже дорожки стабильности, см. рис. 1.1.2); и, кроме этого, ядро 87 Кr имеет один лишний нейтрон сверх замкнутой оболочки из 50 нейтронов в магическом ядре . Такие же причины вызывают появление запаздывающих нейтронов при β - -распаде тяжелого осколка деления 137 I, которое может превращаться в сильно возбужденное ядро 137 Хе * . Испустив нейтрон, ядро 137 Хе * превращается в стабильное ядро с магическим числом нейтронов, равным 82.

Таким образом, можно указать два обстоятельства, благоприятствующие выполнению условия (3.5.17) и, следовательно, появлению запаздывающих нейтронов при β - -распаде: - запрет образования дочернего ядра в основном энергетическом состоянии и малая величина энергии ε n связи нейтрона.

Если ядра сильно перегружены нейтронами и находятся ниже дорожки стабильности (рис. 1.1.2), то возможно образование последовательных цепочек β - -распадов. Подобная ситуация наблюдается в ядерном реакторе, когда продукты (осколки) деления с разной вероятностью образует большое число (сотни) различных цепочек ‑ распадов. На рис. 3.5.4 показаны двеизчисла наиболее вероятных цепочек, на которых отмечено испускание запаздывающих нейтронов ядрами 139 Хе и 94 Sr, физическая причина появления которых рассмотрена выше.

В цепочке β - -распадов 95 Kr наблюдается еще одно распространенное явление, называемое ядерной изомерией . Ядро 95 Zr при распаде образует изомерную пару : возникновение с разной вероятностью ядер 95 m Nb в метастабильном состоянии и ядер 95 Nb в основном энергетическом состояние. Подробнее явление ядерной изомерии рассмотрено в §3.6.

Теория b-распада была создана Ферми в 1934 г. по аналогии с квантовой электродинамикой, в которой испускание и поглощение фотонов рассматривается как результат взаимодействия заряда с создаваемым им самим электромагнитным полем (см. §1.9 п.5). При этом фотоны не содержатся в готовом виде в зарядах, а рождаются непосредственно в момент испускания.

В теории Ферми процесс b-распада рассматривается как результат взаимодействия нуклона с новым видом поля (электроно-нейтринным полем), в результате которого нуклон, находясь в одном из двух возможных нуклонных состояниях – протонном или нейтронном - испускает b-частицу и нейтрино и переходит в другое нуклонное состояние. Нуклоны являются источниками b-частиц и нейтрино, которые рождаются непосредственно в момент преобразования нуклонов в электроно-нейтринном поле. Такого рода поля в настоящее время называются электрослабыми.

Все известные науке взаимодействия связаны всего с четырьмя типами полей: сильными (ядерными), электромагнитными, электрослабыми и гравитационными. Например, все химические реакции относятся к классу электромагнитных взаимодействий, так как осуществляются электрическими силами электронных оболочек атомов. В частности, любые проявления жизни на Земле также имеют электромагнитный характер. Сильное (ядерное) взаимодействие удерживает нуклоны в ядре и проявляется в различных ядерных реакциях. Слабое взаимодействие ответственно за b-распад и распады мезонов. Гравитационное поле проявляется в макроскопических и космических масштабах. Если расположить все эти взаимодействия по их относительной интенсивности, то получим следующую картину:

сильное 1

электромагнитное ~ 10 -2

электрослабое ~ 10 -14

гравитационное ~ 10 -40 .

Не следует думать, что этими цифрами определяется роль соответствующих взаимодействий (полей) в природе. Они равно фундаментальны, то есть без любогоиз них невозможно существование Вселенной.

Теория Ферми позволила рассчитать b-спектры и влияние на форму b-спектров кулоновского поля ядра и электронной оболочки атома. При малой энергии вылетающей заряженной частицы форма любого β-спектра искажается кулоновским взаимодействием между ядром и вылетающей из него β-частицей ядра (рис. 3.5.5). Кулоновское поле ядра оказывает на b - - частицы тормозящее действие. В результате спектр в «мягкой» (низкоэнергетической) области энергий оказывается обогащенными частицами. β - -Спектры с граничной энергией меньше 1 МэВ у средних и тяжелых ядер вообще не имеют максимума, а монотонно спадают. В спектрах b + - распада мягкая область спектра, наоборот, оказывается обедненной. Поле электронной оболочки атома оказывает на спектр незначительное влияние.

При изучении b- распадных явлений было сделано одно из фундаментальных открытий ядерной физики - несохранение четности в слабых взаимодействиях. Гипотезу о несохранение четности в слабых взаимодействиях выдвинули в 1956 г. Ли и Янг, которые показали, что в отличие от теории Ферми, опирающуюся на закон сохранения четности, можно построить теорию b- распада без учета этого закона, которая не противоречила всем известным к тому времени экспериментальным фактам. Они же предложили эксперимент по обнаружению несохранения четности при b- распаде, который был поставлен в 1957 г. Ву. Принципиальные черты этого эксперимента следующие (рис. 3.5.7). b‑Активный образец 60 Со, ядра которого имеют большой спин и магнитный момент (I = 5, m = 3,78 m Б), помещался в магнитное поле кругового тока и охлаждался до очень низких (~ 10 -2 К ) температур. Это было необходимо для ориентирования магнитных моментов и, следовательно, спинов ядер 60 Со в определенном направлении (поляризации) и уменьшения влияния тепловых колебаний ядер. У поляризованного таким образом образца 60 Со регистрировались b- частицы, летящие под углом q и p-q по отношению к направлению поляризующего магнитного поля, то есть по отношению к направлению спина ядра. При выполнении закона сохранения четности для квадрата модуля волновой функции выполняется условие

т.е. инверсия системы координат не может изменить вероятность обнаружения частицы. От азимутального угла j в опыте ничего не зависит. Следовательно, если четность сохраняется, то вероятность зарегистрировать b-частицу под углом q («вперед») и p- q («назад») одинакова. Опыт же показал существенное различие счета частиц под этими углами. «Вперед» (в направлении векторанапряженности магнитного поля) двигалось существенно (~ на 40 %) больше b-частиц, чем «назад». Таким образом, закон сохранения четности, который казался столь же фундаментальным и нерушимым, как и остальные законы сохранения, в случае слабых взаимодействий оказался нарушенным. Это привело к пересмотру и уточнению теория слабых взаимодействий.